Share to: share facebook share twitter share wa share telegram print page

Barjols

Barjols
Barjols címere
Barjols címere
Közigazgatás
Ország Franciaország
MegyeVar
PolgármesterDaniel Nironi
INSEE-kód83012
Irányítószám83670
Népesség
Teljes népesség3006 fő (2021. jan. 1.)[1]
Népsűrűség100 fő/km²
Földrajzi adatok
Tszf. magasság
  • 183 m (legalacsonyabb pont)
  • 473 m (legmagasabb pont)
Terület30,06 km²
IdőzónaCET, UTC+1
Elhelyezkedése
Térkép
é. sz. 43° 33′ 29″, k. h. 6° 00′ 27″43.558056°N 6.007500°EKoordináták: é. sz. 43° 33′ 29″, k. h. 6° 00′ 27″43.558056°N 6.007500°E
Barjols weboldala
A Wikimédia Commons tartalmaz Barjols témájú médiaállományokat.
SablonWikidataSegítség

Barjols település Franciaországban, Var megyében. Lakosainak száma 3006 fő (2021. január 1.).[1] Barjols Tavernes, Brue-Auriac, Châteauvert, Pontevès és Varages községekkel határos.

Népesség

A település népességének változása:

A népesség alakulása 2013 és 2021 között
Lakosok száma
3060
3051
3061
2979
2975
2990
3017
3006
20132015201620172018201920202021
Adatok: Wikidata

Jegyzetek

  1. a b Populations légales 2021

További információk

Read other articles:

Kazutoshi Morimenerima Hadiah Kekaisaran dari Akademi Jepang pada tahun 2016.Nama asal森 和俊Lahir7 Juli 1958 (umur 65)Kurashiki, OkayamaKebangsaanJepangAlmamaterUniversitas KyotoDikenal atasRespons protein takterlipatPenghargaanPenghargaan Gairdner (2009)Penghargaan Lasker (2014) Penghargaan Imperial (2016)Penghargaan Penerobosan dalam Ilmu Kehidupan (2018)Karier ilmiahBidangBiologi molekulerBiologi selInstitusiUniversitas Kyoto Kazutoshi Mori (森 和俊code: ja is deprecated ,...

 

Paradoks Pinokio menyebabkan hidung Pinokio tumbuh memanjang jika dan hanya jika hidungnya tidak tumbuh memanjang. Paradoks Pinokio muncul saat Pinokio mengatakan Hidung saya tumbuh sekarang dan merupakan versi dari paradoks pembohong.[1] Paradoks pembohong didefinisikan dalam filsafat dan logika sebagai pernyataan Kalimat ini salah. Setiap upaya untuk menetapkan biner klasik nilai kebenaran ke pernyataan ini menyebabkan kontradiksi, atau paradoks. Hal ini terjadi karena jika pernyata...

 

Меккель Meckel —  громада  — Вид Меккель Прапор Герб Координати: 49°53′24″ пн. ш. 06°30′57″ сх. д. / 49.8900944° пн. ш. 6.5158806° сх. д. / 49.8900944; 6.5158806 Країна  Німеччина Земля Рейнланд-Пфальц Район Бітбург-Прюм Об'єднання громад Бітбургер-Ла�...

ملعب درايف بينكالشعارمعلومات عامةالمنطقة الإدارية فورت لاودردال البلد  الولايات المتحدة موقع الويب intermiamicf.com… (الإنجليزية) التشييد والافتتاحالافتتاح الرسمي 18 يوليو 2020 المهندس المعماري MANICA Architecture (en) كلفة التشييد 60 مليون دولار أمريكي الاستعمالالرياضة كرة القدم المستضي

 

This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (March 2019) (Learn how and when to remove this template message) Motor vehicle Toyota Classic (YN86)OverviewManufacturerToyotaProduction1996100 producedBody and chassisClassExecutive-Luxury car (E/F)Body style4-door sedanLayoutFR layoutRelatedToyota Hilux (N80)Powertrai...

 

الدون الهادئ (بالروسية: Тихий Дон)‏    المؤلف ميخائيل شولوخوف  اللغة الروسية  تاريخ النشر 1928  النوع الأدبي ملحمية (نوع أدبي)  عدد الأجزاء 4 مجلد  المواقع OCLC 51565813  تعديل مصدري - تعديل   هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإض�...

Electronic measuring instrument that combines several measurement functions in one unit An analog multimeter A multimeter (also known as a volt-ohm-milliammeter, volt-ohmmeter or VOM) is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ammeter, and ohmmeter. Some feature the measurement of additional properties such as temperature and capacitance. Analog multimet...

 

Thailand is a country located in Mainland Southeast Asia with a history of over 700 years and is mainly Buddhist (Theravada Buddhism). Many people, however; still believe in and respect superstition, the supernatural, miracles, magic, animism, amulets, and the like. This is a list of locations in Thailand which are reported to be haunted or paranormal. Bangkok Metropolitan Region Government House of Thailand Sathorn Unique Tower Government House of Thailand: The offices of the Prime Minister ...

 

الأماكن المقدسة في الإسلام أو الحرم الثلاث وهي أماكن العبادة الثلاث الأكثر أهمية وقدسية في الإسلام بالعالم. وهي بالترتيب المسجد الحرام في مكة المكرمة ثم المسجد النبوي في المدينة المنورة ثم المسجد الأقصى في القدس. تتفق الغالبية العظمى من الطوائف الإسلامية على هذا الترتيب.&...

Territoire roumain en mai 1942. L' accord de Tiraspol (roumain : Acordul de la Tiraspol ; allemand : Tiraspoler Abkommen) est un accord entre l'Allemagne nazie et la Roumanie signé le 19 août 1941 dans la ville de Tiraspol (aujourd'hui en Moldavie, sous contrôle transnistrien) concernant l'administration roumaine de la région de Transnistrie, qui devint le gouvernorat de Transnistrie. Il tombe sous le règne de Gheorghe Alexianu, sous la subordination immédiate d'Ion Anton...

 

Village in Pomeranian Voivodeship, PolandCygusyVillageCygusyCoordinates: 53°53′45″N 19°7′1″E / 53.89583°N 19.11694°E / 53.89583; 19.11694Country PolandVoivodeshipPomeranianCountySztumGminaSztum Cygusy [t͡sɨˈɡusɨ] is a village in the administrative district of Gmina Sztum, within Sztum County, Pomeranian Voivodeship, in northern Poland.[1] It lies approximately 7 kilometres (4 mi) south-east of Sztum and 62 km (39 mi) south-e...

 

Software infrastructure system Difference between non-converged, converged and hyper-converged network storage. Hyper-converged infrastructure (HCI) is a software-defined IT infrastructure that virtualizes all of the elements of conventional hardware-defined systems. HCI includes, at a minimum, virtualized computing (a hypervisor), software-defined storage, and virtualized networking (software-defined networking).[1][2] HCI typically runs on commercial off-the-shelf (COTS) ser...

Railway station in Yuanshi County, Shijiazhuang, Hebei, China Yuanshi元氏General informationLocationShengli StreetYuanshi County, Shijiazhuang, HebeiChinaCoordinates37°45′41″N 114°32′18.3″E / 37.76139°N 114.538417°E / 37.76139; 114.538417Operated by CR BeijingLine(s) Beijing–Guangzhou railway Distance Beijing–Guangzhou railway: 300 kilometres (190 mi) from Beijing West 1,996 kilometres (1,240 mi) from Guangzhou Platforms3 (1 side platform an...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (December 2022) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve thi...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Creemore Springs – news · newspapers · books · scholar · JSTOR (November 2012) Creemore SpringsCreemore Springs brewery in CreemoreIndustryAlcoholic beverageFounded1987HeadquartersCreemore, Ontario CanadaProductsBeerOwnerMolson Coors Beverage Company ...

Treatment of a pitch other than the overall tonic, in music V of V in C, four-part harmony Secondary leading-tone chord: viio7/V - V in C major. This may also be considered an altered IV7 (FACE becomes F♯ACE♭).[1] In music, tonicization is the treatment of a pitch other than the overall tonic (the home note of a piece) as a temporary tonic in a composition. In Western music that is tonal, the piece is heard by the listener as being in a certain key. A tonic chord has a d...

 

Mathematics of integer properties For the book by André Weil, see Number Theory: An Approach Through History from Hammurapi to Legendre. Not to be confused with Numerology. The distribution of prime numbers is a central point of study in number theory. This Ulam spiral serves to illustrate it, hinting, in particular, at the conditional independence between being prime and being a value of certain quadratic polynomials. Mathematics Areas Number theory Geometry Algebra Calculus and analysis Di...

 

U.S. copyright court case Viacom International Inc. v. YouTube, Inc.CourtUnited States Court of Appeals for the Second CircuitFull case nameViacom International Inc. v. YouTube, Inc. ArguedOctober 18, 2011DecidedApril 5, 2012HoldingThe Digital Millennium Copyright Act's safe harbor provisions shield an online platform from liability for the copyright infringement of users.Court membershipJudge(s) sittingJosé A. Cabranes, Debra Ann LivingstonCase opinionsDecision byJosé A. CabranesKeywordsCo...

Bakmi jawaSemangkuk bakmi jawa (bakmi godok)Nama lainMi jawa, bakmi godhogTempat asalIndonesiaDaerahJawa Tengah, DI Yogyakarta, Jawa TimurBahan utamaMi, bihun, campuran mi dan bihun, telur bebek, daging ayam kampungVariasimi godok, mi goreng, bakmi nyemek (seperti bakmi kuah, tetapi tidak berkuah/sedikit berkuah),[1] magelangan (nasi goreng campur bakmi) Bakmi jawa atau mi jawa (Jawa: ꦧꦏ꧀ꦩꦶ​ꦒꦺꦴꦝꦺꦴꦒ꧀, translit. bakmi godhog) adalah bakmi rebus yang ...

 

South Korean singer and actress (1991–2019) Not to be confused with Go Ara. In this Korean name, the family name is Goo. Goo HaraGoo at the Midnight Runners premiere in August 2017Born(1991-01-03)January 3, 1991Gwangju, South KoreaDiedNovember 24, 2019(2019-11-24) (aged 28)Seoul, South KoreaCause of deathSuicideResting placeSkycastle Memorial Park Gwangju, South KoreaOccupationsSingeractressYears active2008–2019AgentsKeyEastOgiMusical careerGenresK-popInstrument(s)VocalsLab...

 
Kembali kehalaman sebelumnya