Penulisan A = {1, 2, 3, 4} berarti bahwa elemen-elemen himpunan A adalah bilangan 1, 2, 3 dan 4. Himpunan elemen-elemen A, misalnya {1, 2}, merupakan subsetA.
Himpunan itu sendiri dapat merupakan elemen. Misalnya ada himpunan B = {1, 2, {3, 4}}. Elemen-elemen Bbukan 1, 2, 3, dan 4. Melainkan, hanya ada tiga elemen B, yaitu bilangan 1 dan 2, dan himpunan {3, 4}.
Elemen-elemen suatu himpunan dapat berupa apa saja. Misalnya, C = { merah, hijau, biru }, adalah suatu himpunan yang elemen-elemennya adalah warna-warna merah, hijau dan biru.
Notasi
Elemen dinyatakan melalui simbol "∈", yang mengartikan "elemen dari".[1] Sebagai contoh, berarti bahwa "x adalah elemen dari A". Ini juga diartikan sebagai "x adalah anggota dari A". Negasi dari simbol tersebut dinyatakan dengan "∉". Ketika menulis , maka dapat diartikan sebagai "x bukan elemen dari A".
Contoh
Menggunakan himpunan-himpunan yang didefinisikan di atas, yaitu A = {1, 2, 3, 4 }, B = {1, 2, {3, 4}} dan C = { merah, hijau, biru }:
2 ∈ A
{3,4} ∈ B
{3,4} adalah anggota dari B
Kuning ∉ C
Referensi
^Agustianti, Rifka; Nuryami; Fajriah, Nurul Ainun; Nasruddin; Nay, Flori Aloysius; Mahmud, Ramlan; Kumanireng, Lusia Bince; Yanuarto, Wanda Nugroho; Faelasofi, Rahma (2022-06-08). Filsafat Pendidikan Matematika. Get Press. hlm. 81. ISBN978-623-5383-22-4.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
Pustaka tambahan
Halmos, Paul R. (1974) [1960], Naive Set Theory, Undergraduate Texts in Mathematics (edisi ke-Hardcover), NY: Springer-Verlag, ISBN0-387-90092-6 - "Naive" means that it is not fully axiomatized, not that it is silly or easy (Halmos's treatment is neither).
Suppes, Patrick (1972) [1960], Axiomatic Set Theory, NY: Dover Publications, Inc., ISBN0-486-61630-4 - Both the notion of set (a collection of members), membership or element-hood, the axiom of extension, the axiom of separation, and the union axiom (Suppes calls it the sum axiom) are needed for a more thorough understanding of "set element".