Share to: share facebook share twitter share wa share telegram print page

Successione di Rudin-Shapiro

In matematica la successione di Rudin–Shapiro, nota anche come successione di Golay–Rudin–Shapiro è una sequenza automatica infinita; prende il nome da Marcel Golay, Walter Rudin e Harold S. Shapiro, che hanno studiato le sue proprietà indipendentemente uno dall'altro.[1]

Definizione

Ogni termine della successione di Rudin–Shapiro è o +1 o −1. Il termine n-esimo della successione, bn, è definito dalle regole:

dove εi sono le cifre della rappresentazione in base 2 di n. In questo modo an conta il numero di occorrenze della sottostringa 11 (comprese le stringe sovrapposte) nella rappresentazione binaria, e bn vale +1 se an è pari e −1 se an è dispari.[2][3][4]

Ad esempio a6 = 1 e b6 = −1 perché la rappresentazione binaria di 6 è 110, che contiene una occorrenza di 11; invece, a7 = 2 e b7 = +1 perché la rappresentazione binaria di 7 è 111, che contiene due occorrenze (sovrapposte) di 11.

Cominciando con n = 0, i primi termini della successione an sono:

0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, ...[5]

e i corrispondenti termini della successione bn di Rudin–Shapiro sono:

+1, +1, +1, −1, +1, +1, −1, +1, +1, +1, +1, −1, −1, −1, +1, −1, ...[6]

Proprietà

La successione di Rudin–Shapiro può essere generata da un automa a quattro stati.[7]

La definizione ricorsiva è[3]

I valori dei termini an e bn nella successione di Rudin–Shapiro si può trovare riscorsivamente come illustrato di seguito: se n = m·2k, dove m è dispari allora

Quindi a108 = a13 + 1 = a3 + 1 = a1 + 2 = a0 + 2 = 2, come si può verificare osservando che la rappresentazione binaria di 108 è 1101100, che contiene due sottostringhe 11; da questo b108 = (−1)2 = +1.

La parola di Rudin–Shapiro +1 +1 +1 −1 +1 +1 −1 +1 +1 +1 +1 −1 −1 −1 +1 −1 ..., che si crea concatenando i termini della successione, è un punto fisso del morfismo (insieme di regole di sostituzione delle stringhe)

+1 +1 +1 +1 +1 −1
+1 −1 +1 +1 −1 +1
−1 +1 −1 −1 +1 −1
−1 −1 −1 −1 −1 +1

come segue:

+1 +1 +1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 +1 +1 +1 −1 +1 +1 −1 +1 +1 +1 +1 −1 −1 −1 +1 −1 ...

Si può vedere che da queste regole che la stringa di Rudin–Shapiro contiene al più quattro simboli +1 consecutivi e al più quattro simboli -1 consecutivi.

Della successione delle somme parziali della successione di Rudin–Shapiro, definita da

con valori

1, 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 4, ... (EN) Sequenza A020986, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.

si può dimostrare che soddisfa la diseguaglianza

[1]

Note

  1. ^ a b John Brillhart, Patrick Morton, A Case Study in Mathematical Research: The Golay-Rudin-Shapiro Sequence, in The American Mathematical Monthly, vol. 103, 1996, p. 854, DOI:10.2307/2974610.
  2. ^ (EN) Eric W. Weisstein, Successione di Rudin-Shapiro, in MathWorld, Wolfram Research. Modifica su Wikidata
  3. ^ a b Pytheas Fogg (2002) p.42
  4. ^ Everest et al (2003) p.234
  5. ^ (EN) Sequenza A014081, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.
  6. ^ (EN) Sequenza A020985, su On-Line Encyclopedia of Integer Sequences, The OEIS Foundation.
  7. ^ Finite automata and arithmetic, Jean-Paul Allouche

Bibliografia

  • Jean-Paul Allouche e Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003, ISBN 978-0-521-82332-6, Zbl 1086.11015.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski e Thomas Ward, Recurrence sequences, Mathematical Surveys and Monographs, vol. 104, Providence, American Mathematical Society, 2003, ISBN 0-8218-3387-1, Zbl 1033.11006.
  • N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, a cura di Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, A., Lecture Notes in Mathematics, vol. 1794, Berlin, Springer-Verlag, 2002, ISBN 3-540-44141-7, Zbl 1014.11015.
  • Michel Mendès France, The Rudin-Shapiro sequence, Ising chain, and paperfolding, in Bruce C. Berndt, Harold G. Diamond, Heini Halberstam, Adolf Hildebrand (a cura di), Analytic number theory. Proceedings of a conference in honor of Paul T. Bateman, held on April 25–27, 1989, at the University of Illinois, Urbana, IL (USA), Progress in Mathematics, vol. 85, Boston, Birkhäuser, 1990, pp. 367–390, ISBN 0-8176-3481-9, Zbl 0724.11010.

Voci correlate

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (février 2020). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pratique : Quelles sources sont attendues ? C...

 

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Brockport Golden EaglesAthletic directorErick HartHead coachJason Mangone 9th seaso...

 

Rotterdam HofpleinHofplein in 2005General informationLocationNetherlandsCoordinates51°55′37″N 4°28′45″E / 51.92694°N 4.47917°E / 51.92694; 4.47917Platforms1Other informationStation codeRthHistoryOpened1 Oct 1908, reopened 10 Sep 2006Closed3 Jun 2006, reclosed 16 Aug 2010LocationRotterdam HofpleinLocation within Southwest RandstadShow map of Southwest RandstadRotterdam HofpleinRotterdam Hofplein (Netherlands)Show map of Netherlands Rotterdam Hofplein railway...

Leo EsakiFisikawan Jepang Reona Esaki dari Sony menampilkan 'Esaki Diode' pada 29 Desember 1959LahirMarch 12, 1925 (1925-03-12)Osaka, JapanKebangsaanJapanDikenal ataselectron tunneling, Esaki diodePenghargaanStuart Ballantine Medal (1961)Penghargaan Nobel dalam Fisika (1973) IEEE Medal of HonorKarier ilmiahBidangApplied physics Leo Esaki (江崎 玲於奈; transkripsi yang benar Esaki Reona; juga dikenal sebagai Esaki Leona, (lahir 12 Maret 1925) adalah fisikawan Jepang-Amerika Serikat y...

 

, Mumi (sˁḥ) Hieroglif Mesir Mumi Llullaillaco dari Provinsi Salta Argentina Topeng kematian emas milik Pharaoh Tutankhamun Mumi adalah sebuah mayat yang diawetkan, dikarenakan perlindungan dari dekomposisi oleh cara alami atau buatan, sehingga bentuk awalnya tetap terjaga. Ini dapat dicapai dengan menaruh tubuh tersebut di tempat yang sangat kering atau sangat dingin, atau ketiadaan oksigen, atau penggunaan bahan kimiawi. Mumi paling terkenal adalah mumi yang dibalsam dengan tujuan pengaw...

 

2013 studio album by Miss A HushStudio album by Miss AReleasedNovember 6, 2013Genre R&B dance-pop K-pop Length45:59Language Korean English Label AQ/JYP KT Music ProducerPark Jin-youngMiss A chronology Independent Women Part III(2012) Hush(2013) Colors(2015) Singles from Hush HushReleased: November 6, 2013 Come On OverReleased: December 18, 2013 Hide & SickReleased: January 21, 2014 Love Is UReleased: February 16, 2014 Hush is the second studio album by South Korean-Chinese girl gr...

Nelson McDowellLahir(1870-08-14)14 Agustus 1870Greenville, Missouri, Amerika SerikatMeninggal3 November 1947(1947-11-03) (umur 77)Hollywood, California, Amerika SerikatPendidikanNorthwestern University (A.B. dan D.D.S.)Tahun aktif1917-1945 Nelson McDowell (14 Agustus 1870 – 3 November 1947) adalah seorang pemeran Amerika Serikat.[1] Ia tampil dalam 176 film antara 1917 dan 1945. Sebagian filmografi The Scarlet Car (1917) The Feud (1919) Masked (1920) Cupid th...

 

Arsinoe II. Arsinoe II (dalam bahasa Yunani: Ἀρσινόη, lahir 316 SM - wafat July 270 SM), adalah seorang ratu Thrace, Asia Minor dan Makedonia sebagai istri dari Raja Lysimachus (bahasa Yunani: Λυσίμαχος), kemudian menjadi penguasa Mesir bersama suami yang juga merupakan adik kandungnya yaitu Ptolemeus II Philadelphos (dalam tulisan Yunani: Πτολεμαῖος Φιλάδελφος, (dapat diartikan Ptolemeus yang mencintai saudara kandung atau dalam bahasa Inggris: Ptolemy t...

 

1959 film The Domestic TyrantDirected byHans DeppeWritten byWerner P. ZibasoBased onThe Scoundrel by Hans Reimann and Toni ImpekovenProduced byWalter TrautStarringHeinz ErhardtGrethe WeiserPeter VogelCinematographyOskar SchnirchEdited byWerner PreussMusic byRaimund RosenbergerProductioncompanyDivina-FilmDistributed byGloria FilmRelease date29 January 1959Running time90 minutesCountryWest GermanyLanguageGerman The Domestic Tyrant (German: Der Haus-Tyrann) is a 1959 West German comedy film dire...

The Boeing CompanyJenisPublikKode emitenNYSE: BADow Jones Industrial Average ComponentS&P 500 ComponentIndustriDirgantaraPertahananDidirikan15 Juli 1916; 107 tahun lalu (1916-07-15) (sebagai Pacific Aero Products Co.)Seattle, Washington, AS[1]PendiriWilliam Edward BoeingKantorpusatChicago, Illinois, Amerika Serikat[2]Wilayah operasiSeluruh dunia[1](hlm.1)TokohkunciDave Calhoun (Pemimpin, Presiden dan CEO)Raymond Conner (Wakil Pemimpin)ProdukKeluarga 737, ...

 

Fictional character Soap opera character Colby ThorneHome and Away characterPortrayed byTim FranklinDuration2018–2021First appearance6 February 2018 (2018-02-06)Last appearance11 February 2021 (2021-02-11)ClassificationFormer; regularIntroduced byLucy AddarioIn-universe informationOccupationSenior ConstableFatherAndrew ThorneMotherMichelle ThorneStepfatherRoss NixonHalf-sistersBella NixonWifeChelsea Campbell (2018–2020) Colby Thorne is a f...

 

CFL Lijn 1a Ettelbruck - Grevenmacher Totale lengte58,7 kmSpoorwijdtenormaalspoor 1435 mmAangelegd doorEttelbruck - Diekirch: Compagnie Grande LuxembourgDiekirch - Grevenmacher: Société Anonyme Luxembourgeoise des Chemins de fer et Minières Prince HenriGeopendEttelbruck - Diekirch: 16 november 1862Diekirch - Echternach: 8 december 1873Echternach - Wasserbillig: 20 mei 1874Wasserbillig - Grevenmacher: 25 november 1891GeslotenDiekirch - Echternach: 1964Echternach - Grevenmacher: 1963Huidige ...

American pyrotechnics company Pyro Spectaculars, Inc.TypePrivateFounded1906 in San Francisco, CaliforniaFounderManuel de SousaHeadquartersRialto, California, United StatesKey peopleJim SouzaProducts Fireworks Entertainment Show Production Souza Brand Fireworks Number of employees75Websitewww.pyrospec.com Pyro Spectaculars is an American pyrotechnics and fireworks company with its primary offices in Rialto, California. They are one of the largest fireworks companies in the world today. Jim Sou...

 

Seeds of Death redirects here. For the Doctor Who serial, see The Seeds of Death. 2007 French filmHave Mercy on Us AllFilm posterDirected byRégis WargnierWritten byRégis WargnierAriane FertHarriet MarinJulien RappeneauLawrence ShoreBased onHave Mercy on Us Allby Fred VargasProduced byCyril Colbeau-JustinJean-Baptiste DupontGrégory BarreyNina HeynsStarringJosé GarciaCinematographyLaurent DaillandEdited byYann MalcorMusic byPatrick DoyleProductioncompanyGaumontDistributed byGaumont Columbia...

 

Raben GroupHeadquartersNetherlands Raben Group is a Dutch logistics company group. Its operations include contract logistics, warehousing, international road forwarding, domestic distribution, sea and air freight, intermodal transport and logistics services for fresh products (Fresh Logistics). The first company established by the Raben family started its operations in Meddo/Winterswijk, Netherlands in 1931. Now, Raben Group operates in 15 countries: Netherlands, Poland, Germany, the Czech Re...

Russian marathon runner For the figure skater and coach, see Alexei Sokolov. Sokolov preparing for VCM 2013. Aleksey Vladimirovich Sokolov (Russian: Алексей Владимирович Соколов) (born November 14, 1979) is a marathon runner. He represented his country at the 2008 Summer Olympics. He won the Dublin Marathon twice and was Russia's national marathon champion in 2007. His time of 2:09:07 hours in Dublin that year is the Russian record for the event. Career In his e...

 

Hypothetical megastructure around a star A diagram depicting a Dyson Sphere Freeman Dyson, the first scientist to explore the concept A Dyson sphere is a hypothetical megastructure that encompasses a star and captures a large percentage of its solar power output.[1][2][3] The concept is a thought experiment that attempts to imagine how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet...

 

Thespianz TheatreThespianx foundationTypeNot-for-profit arts organizationIndustryEntertainment Educational and SocialGenreUrdu and English Theatre plays, String Puppet Theatre, street theatre & theatre for peace and spreading love. Performing arts for developmentFoundedFeb 2005 – Karachi, PakistanFounderFaisal MalikHeadquartersKarachi, Pakistan Key peopleFaisal Malik, Sheikh Sameer NadeemWebsitewww.thespianzfoundation.org Thespianz Theatre is a social performing arts organizat...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Deddy Corbuzier, pencipta diet OCD. Obsessive Corbuzier Diet (OCD) adalah diet yang diciptakan oleh aktor, presenter, mentalis, dan YouTuber Indonesia, Deddy Corbuzier pada tahun 2013 dengan tujuan untuk menurunkan berat badan dan juga membentuk otot y...

 

2014 Mexican filmThe DeadTheatrical release posterDirected bySantiago Mohar VolkowWritten bySantiago Mohar VolkowProduced byAlejandro Blazquez de NicolasPablo CarvalloRegina GalazGermán GarcíaAlejandro Lopez PortilloFederico MalletAndres Martinez-RiosSantiago Mohar VolkowJosé Julián MoralesGerardo MoranJuan Martín SimonsØyvind StiaurenJoakim ZieglerStarringElena LarreaFlorencia RíosIgnacio BetetaJorge CaballeroSantiago CorcueraCinematographyLuis Sols BalcellsEdited byDidac PalouMusic b...

 
Kembali kehalaman sebelumnya