配偶子を形成する構造は、配偶子囊 (gametangium, pl. gametangia) とよばれる。陸上植物では配偶子囊は多細胞の構造であるが、緑藻においては単一の細胞が配偶子囊になり、配偶子は母細胞の細胞壁のみに囲まれている[3][5][6][33]。卵生殖を行う緑藻では、卵を形成する配偶子囊は生卵器 (oogonium, pl. oogonia)、精子を形成する配偶子囊は造精器 (antheridium, pl. antheridia) とよばれる。例外的に、シャジクモ類の配偶子囊 (生卵器、造精器) は多細胞からなる複雑な構造をもつ (右図8)。
^Arakaki, Y., Kawai-Toyooka, H., Hamamura, Y., Higashiyama, T., Noga, A., Hirono, M. ... & Nozaki, H. (2013). “The simplest integrated multicellular organism unveiled”. PLoS One8 (12): e81641.
^Herron, M. D. (2016). “Origins of multicellular complexity: Volvox and the volvocine algae”. Molecular Ecology25 (6): 1213-1223. doi:10.1111/mec.13551.
^Chihara, M., Inouye, I. & Takahata, N. (1986). “Oltmannsiellopsis, a new genus of marine flagellate (Dunaliellaceae, Chlorophyceae)”. Archiv für Protistenkunde132 (4): 313-324. doi:10.1016/S0003-9365(86)80026-4.
^Hessen, D. O. & Van Donk, E. (1993). “Morphological changes in Scenedesmus induced by substances released from Daphnia”. Archiv fur Hydrobiologie127: 129-129.
^Lürling, M. (2003). “The effect of substances from different zooplankton species and fish on the induction of defensive morphology in the green alga Scenedesmus obliquus”. Journal of Plankton Research25 (8): 979-989. doi:10.1093/plankt/25.8.979.
^ abConeva, V. & Chitwood, D. H. (2015). “Plant architecture without multicellularity: quandaries over patterning and the soma-germline divide in siphonous algae”. Frontiers in Plant Science6: 287. doi:10.3389/fpls.2015.00287.
^Kouwets, F. A. & van der Schaaf, P. J. (1992). “Two types of cytoplasmic cleavage in the coenocytic soil alga Protosiphon botryoides (Chlorophyceae)”. Journal of Phycology28 (4): 526-537. doi:10.1111/j.0022-3646.1992.00526.x.
^Aboal, M. & Werner, O. (2011). “Morphology, fine structure, life cycle and phylogenetic analysis of Phyllosiphon arisari, a siphonous parasitic green alga”. European Journal of Phycology46: 181-192. doi:10.1080/09670262.2011.590902.
^ abDomozych, D., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P. & Willats, W. G. (2012). “The cell walls of green algae: a journey through evolution and diversity”. Frontiers in Plant Science3: 82. doi:10.3389/fpls.2012.00082.
^ abBecker, B., Marin, B. & Melkonian, M. (1994). “Structure, composition, and biogenesis of prasinophyte cell coverings”. Protoplasma181 (1-4): 233-244. doi:10.1007/BF01666398.
^ abcdSym, S. D. & Pienaar, R. N. (1993). “The class Prasinophyceae”. In Round, F. E. & Chapman, D. J.. Progress in Phycological Research. Biopress Ltd., Bristol. pp. 281-376
^Pentecost, A. (1991). “Calcification processes in algae and cyanobacteria”. In Riding, R.. Calcareous Algae and Stromatolites. Springer, Berlin, Heidelberg. pp. 3-20. ISBN978-3-642-52337-3
^Miyamura, S., Hori, T., Ohya, T., Tohma, T. & Ikawa, T. (1996). “Co-localization of chloroplast DNA and ribulose-1,5-bisphosphate carboxylase/oxygenase in the so-called pyrenoid of the siphonous green alga Caulerpa lentillifera (Caulerpales, Chlorophyta)”. Phycologia35: 156–160. doi:10.2216/i0031-8884-35-2-156.1.
^ abLatasa, M., Scharek, R., Le Gall, F. & Guillou, L. (2004). “Pigment suites and taxonomic groups in Prasinophyceae”. J. Phycol.40: 1149-1155. doi:10.1111/j.1529-8817.2004.03136.x.
^Takaichi, S. (2011). “Carotenoids in algae: distributions, biosyntheses and functions”. Marine Drugs9: 1101-1118. doi:10.3390/md9061101.
^Egeland, E. S., Guillard, R. R., & Liaaen-Jensen, S. (1997). “Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta)”. Phytochemistry44: 1087-1097. doi:10.1016/S0031-9422(00)85601-0.
^ abcdos Santos, A. L., Pollina, T., Gourvil, P., Corre, E., Marie, D. et al. (2017). “Chloropicophyceae, a new class of picophytoplanktonic prasinophytes”. Scientific Reports7: 14019. doi:10.1038/s41598-017-12412-5.
^Solovchenko, A. E. (2013). “Physiology and adaptive significance of secondary carotenogenesis in green microalgae”. Russian Journal of Plant Physiology60 (1): 1-13. doi:10.1134/S1021443713010081.
^Nadakavukaren, M. J. & McCracken, D. A. (1977). “An ultrastructural survey of the genus Prototheca with special reference to plastids”. Mycopathologia61 (2): 117-119. doi:10.1007/BF00443840.
^Figueroa-Martinez, F., Nedelcu, A. M., Smith, D. R. & Reyes-Prieto, A. (2017). “The plastid genome of Polytoma uvella is the largest known among colorless algae and plants and reflects contrasting evolutionary paths to nonphotosynthetic lifestyles”. Plant Physiology173 (2): 932-943. doi:10.1104/pp.16.01628.
^Ciferri, O. (1956). “Thiamine-deficiency of Prototheca, a yeast-like achloric alga”. Nature178 (4548): 1475-1476. doi:10.1038/1781475a0.
^Tartar, A., Boucias, D. G., Adams, B. J. & Becnel, J. J. (2002). Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta). 52. 273-279. doi:10.1099/00207713-52-1-273
^Martins, T. P., Ramos, V., Hentschke, G. S., Castelo‐Branco, R., Rego, A., Monteiro, M., ... & Krienitz, L. (2020). “The extremophile Endolithella mcmurdoensis gen. et sp. nov.(Trebouxiophyceae, Chlorellaceae), a new Chlorella‐like endolithic alga from Antarctica”. Journal of Phycology56: 208-216. doi:10.1111/jpy.12940.
^Matsuzaki, R., Hara, Y. & Nozaki, H. (2014). “A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material”. Phycologia53 (3): 293-304. doi:10.2216/14-3.1.
^Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D. ... & Hodson, A. (2012). “Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet”. The ISME Journal6 (12): 2302-2313. doi:10.1038/ismej.2012.107.
^Muggia, L., Leavitt, S. & Barreno, E. (2018). “The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta)”. Phycologia57: 503-524. doi:10.2216/17-134.1.
^Honegger, R. (2009). “Lichen-Forming Fungi and Their Photobionts”. In Deising, H.B.. Plant Relationships. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 5. Springer, Berlin, Heidelberg. pp. 307-333. ISBN978-3-540-87406-5
^Goff, L. J. (Ed.) (2011). Algal Symbiosis: a continuum of interaction strategies. Cambridge University Press. pp. 221. ISBN978-0-521-17742-9
^Letsch, M. R., Muller‐Parker, G., Friedl, T. & Lewis, L. A. (2009). “Elliptochloris marina sp. nov.(Trebouxiophyceae, Chlorophyta), symbiotic green alga of the temperate pacific sea anemones Anthopleura xanthogrammica and A. elegantissima (Anthozoa, Cnidaria)”. Journal of Phycology45: 1127-1135. doi:10.1111/j.1529-8817.2009.00727.x.
^Kim, E., Lin, Y., Kerney, R., Blumenberg, L. & Bishop, C. (2014). “Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses”. PloS One9 (11): e108915. doi:10.1371/journal.pone.0108915.
^Yamada, M., Wada, K., & Ohno, T. (2003). “Observations on the alga Cladophora conchopheria on shells of the intertidal gastropod Turbo coronatus coreensis”. Benthos Research58: 1-6. doi:10.5179/benthos1996.58.1_1.
^嶌田 智 (2012). “アオサ,アオノリ,ヒトエグサ”. In 渡邉 信 (監). 藻類ハンドブック. 株式会社エヌ・ティー・エス. pp. 564–567. ISBN978-4864690027
^城間 一仁 (2012). “クビレズタ”. In 渡邉 信 (監). 藻類ハンドブック. 株式会社エヌ・ティー・エス. pp. 568–571. ISBN978-4864690027
^嶌田 智 (2012). “その他の緑色大型藻 (カワノリ,ミルなど)”. In 渡邉 信 (監). 藻類ハンドブック. 株式会社エヌ・ティー・エス. pp. 572–574. ISBN978-4864690027
^丸山 功 (2012). “クロレラ”. In 渡邉 信 (監). 藻類ハンドブック. エヌ・ティー・エス. pp. 660–663. ISBN978-4864690027
^ abcdefghijklmnopqrBold, H. C. & Wynne, M. J. (1978). Introduction to the algae : structure and reproduction. Prentice-Hall. pp. 706. ISBN9780134777863
^Ettl, H. (1966). “Über die Systematische Gliederung kleiner Chlorophyceen”. Nova Hedwigia10: 515-525.
^Ettl, H. (1985). Süsswasserflora von Mitteleuropa. 9. Chlorophyta I Phytomonadina. Gustav Fischer Verlag. pp. 807. ISBN978-3-8274-2659-8
^ abvan den Hoek, C., Stam, W. T. & Olsen, J. L. (1988). “The emergence of a new chlorophytan system, and Dr. Kornmann's contribution thereto”. Helgoländer Meeresuntersuchungen42 (3-4): 339-383. doi:10.1007/BF02365617.
^仲田 崇志 (2012). “緑藻類”. In 渡邉 信 (監). 藻類ハンドブック. 株式会社エヌ・ティー・エス. pp. 28–32. ISBN978-4864690027
^ abcdefghijklmNeustupa, J. (2015). “Class Chlorophyceae”. In Frey, W. (ed.). Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger Science Publishers. pp. 216–240. ISBN978-3-443-01083-6
^ abcdefghijklmnLeliaert, F., Lopez-Bautista, J., De Clerck, O. & Neustupa, J. (2015). “Class Ulvophyceae”. In Frey, W. (ed.). Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger Science Publishers. pp. 247–280. ISBN978-3-443-01083-6
^Nakada, T., Misawa, K. & Nozaki, H. (2008). “Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses”. Molecular Phylogenetics and Evolution48 (1): 281-291. doi:10.1016/j.ympev.2008.03.016.
^Leliaert, F., Lopez-Bautista, J. & De Clerck, O. (2015). “Class Chlorodendrophyceae”. In Frey, W. (ed.). Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger Science Publishers. pp. 202–203. ISBN978-3-443-01083-6
^ abcdNeustupa, J. (2015). “Class Trebouxiophyceae”. In Frey, W. (ed.). Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger Science Publishers. pp. 203–216. ISBN978-3-443-01083-6
^ abcNeustupa, J. (2015). “Streptophyta”. In Frey, W. (ed.). Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Borntraeger Science Publishers. pp. 282–294. ISBN978-3-443-01083-6
^ ab渡邊 信 & 中山 剛 (1999). “車軸藻綱”. In 千原 光雄 (編). バイオディバーシティ・シリーズ (3) 藻類の多様性と系統. 裳華房. pp. 285–289. ISBN978-4785358266
^Cheng, S., Xian, W., Fu, Y., Marin, B., Keller, J., Wu, T., ... & Wittek, S. (2019). “Genomes of subaerial Zygnematophyceae provide insights into land plant evolution”. Cell179: 1057-1067. doi:10.1016/j.cell.2019.10.019.
^Gontcharov, A. A. & Melkonian, M. (2004). “Unusual position of the genus Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and rbcL sequence comparisons”. Phycologia43: 105-113. doi:10.2216/i0031-8884-43-1-105.1.
^Blindow, I. & Schudack, M. (2015). “Class Charophyceae”. In Frey, W.. Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Stuttgart: Borntraeger Science Publishers. pp. 294–300. ISBN978-3-443-01083-6
^Stewart,K.D. & Mattox, K. R. (1975). “Comparative cytology, evolutionand classification of the green algae, with some consideration of theorigin of other organisms with chlorophylls a and b.”. Botanical Review4141: 104–135.
^O'Kelly, C. J. & Floyd, G. L. (1983). “Flagellar apparatus absolute orientations and the phylogeny of the green algae”. BioSystems16: 227-251. doi:10.1016/0303-2647(83)90007-2.
^Melkonian, M. (1982). “Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants”. Taxon31: 255-265. doi:10.2307/1219989.
^ abcdMattox, K. R. & Stewart, K. D. (1984). “Classification of the green algae: a concept based on comparative cytology”. In Irvine, D. E. G. & John, D. (eds.). The Systematics of the Green Algae. Academic Press, New York. pp. 29-72
^O.T.P.T.I. [= One Thousand Plant Transcriptomes Initiative] (2019). “One thousand plant transcriptomes and the phylogenomics of green plants”. Nature574: 679-685. doi:10.1038/s41586-019-1693-2.
^Yang, T., Liao, X., Yang, L., Liu, Y., Mu, W., Sahu, S. K., ... & Liu, H. (2019). “Comparative analyses of 3654 chloroplast genomes unraveled new insights into the evolutionary mechanism of green plants”. bioRxiv: 655241. doi:10.1101/655241.
^Frey, W., ed (2015). “Class Charophyceae”. Syllabus of Plant Families - A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Stuttgart: Borntraeger Science Publishers. pp. 193–196. ISBN978-3-443-01083-6
^ abLi, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., ... & Reder, T. (2020). “The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants”. Nature Ecology & Evolution4: 1220–1231. doi:10.1038/s41559-020-1221-7.