LE-7エンジンは、宇宙開発事業団(NASDA)が航空宇宙技術研究所(NAL)、三菱重工業、石川島播磨重工業(現IHI)と共に開発したH-IIロケットの第1段用液体ロケットエンジン。日本初の第1段用液体ロケットエンジンである。
LE-7の後継に、コストダウンと信頼性向上を図ったLE-7Aエンジンがある。
開発
LE-7エンジンの燃焼方式には、SSME(スペースシャトルメインエンジン)に採用されたのと同じ二段燃焼サイクルを採用している[1]。LE-7では、プリバーナーと呼ばれる予燃焼室に気化した燃料の液体水素と酸化剤の液体酸素の一部を導き(多くの液体酸素は主燃焼室に直接送られる)、燃焼させて水素リッチの高圧な不完全燃焼ガスを作り、その燃焼ガスで液体水素用と液体酸素用の両ターボポンプを駆動して両推進剤を加速・加圧させた後に、主燃焼室で再び燃焼ガスと液体酸素を燃焼させて推進力を生み出している[2]。この方式は燃焼効率は良いがエンジンの配管などに高温・高圧部分が多いため技術的に難しく、LE-7の開発においてもトラブルが続出し開発期間が幾度となく延長された。
開発においてまず突き当たった壁はターボポンプの振動が過大で所定の回転数が得られないことであった。原因はターボポンプの羽根車の重心が中心軸からごく僅かにズレていたことであり、職人の手作業で羽根車を研磨して重心を適正化することで解決した。その後燃焼試験が始まったが、エンジン始動開始直後に爆発や損傷を繰り返す5秒の壁が問題となった。原因は予備燃焼室に液体酸素が先に溜まりその後に液体水素が来ることで過剰な反応を起こしていたことであり、圧力計をつけて予備燃焼室に両推進剤が来るタイミングを調整することで解決した。この問題を解決するだけで約2年を費やした。
その後も燃焼試験が続いたが、エンジンの完成が近いと思われた1992年、エンジン始動直後に爆発が起き、H-IIの初打ち上げが1年延期されることになった。原因はエンジンの各部品を溶接して接合した際に生じた微妙な凹凸部に熱や力が集中して損傷したことであり、職人の手作業で鏡を使って部品の内側の溶接部分まで徹底的に研磨して平滑にすることで解決した。なおこの工程は手間がかかり、信頼性やコストに関わるため、後継のLE-7Aでは溶接箇所が四分の一以下に減らされている。
開発と製造においては、三菱重工業が燃焼器・バルブ・全体艤装を、石川島播磨重工業(現IHI)が液体水素用ターボポンプと液体酸素用ターボポンプを担った。
諸元
H-II 8号機 事故原因
事故直後のテレメータデータから、LE-7エンジン高圧配管系に何らかのトラブルがあり推進薬の供給が瞬時に停止していたと推定された。1999年12月24日に、海洋科学技術センター(現JAMSTEC)の協力によって海底に沈んだLE-7エンジンの残骸を発見。2000年1月23日に、海底3,000mからエンジンを引き上げた。
残骸の調査から、液体水素ターボポンプインデューサが破断していることが判明し、破断面調査の結果から疲労破壊が原因と推定された。インデューサ単体の試験を繰り返した結果、旋回キャビテーションと呼ばれる現象とそれに起因する部品の共振が発生し、インデューサに過大な負荷をかけ疲労破壊に至ったことが事故の原因と判明した。これらの結果は、後のLE-7Aの開発に活かされることになった。
注釈
- ^ 宇宙開発における計画管理は進捗によって「研究(研究→概念設計)」→「開発研究(予備設計)」→「開発(基本設計→詳細設計→維持設計)」→「運用」の4つの段階(フェーズ)に分かれている。要求に基づき仕様や計画を決めるのが「研究」、仕様や計画を詳細に文書化し、新技術の試作をし実現性の目処を付け、開発体制を構築するのが「開発研究」、設計についての各種解析をし全体の試作品から実機を作るまでが「開発」である。「開発研究」までが企画立案フェーズ、「開発」以降が実施フェーズである。宇宙開発委員会は各フェーズアップに対する審査を行う。この一連の開発手法はNASAではPPP(Phased Project Planning)と呼び、NASDAが取り入れたものである[3][4]。
脚注
関連項目
ウィキメディア・コモンズには、
LE-7に関連するカテゴリがあります。
外部リンク