Macierz symetryczna – macierz kwadratowa (tzn. o tej samej liczbie wierszy i kolumn), której wyrazy położone symetrycznie względem przekątnej głównej są równe; formalnie jest to macierz kwadratowa stopnia która dla spełnia warunek
który można zapisać krótko przy pomocy transpozycji jako
Własności
- Kombinacja liniowa macierzy symetrycznych oraz macierz odwrotna do odwracalnej macierzy symetrycznej są macierzami symetrycznymi; iloczyn macierzy symetrycznych na ogół nie jest symetryczny.
- Dla dowolnej macierzy macierz jest symetryczna, bowiem
- Dla macierzy macierz jest symetryczna, bowiem
- Przestrzeń macierzy kwadratowych stopnia rozkłada się na sumę prostą przestrzeni kwadratowych macierzy symetrycznych i antysymetrycznych: jeżeli jest dowolną macierzą kwadratową stopnia to
- przy czym pierwszy składnik jest macierzą symetryczną, a drugi – antysymetryczną.
Przykłady
Poniższe macierze są symetryczne:
Zobacz też
Bibliografia
Niektóre typy macierzy | Cechy niezależne od bazy |
|
---|
Cechy zależne od bazy |
|
---|
|
---|
Operacje na macierzach | jednoargumentowe |
|
---|
dwuargumentowe |
|
---|
|
---|
Niezmienniki | |
---|
Inne pojęcia |
|
---|