În matematică, un pătrat magic de ordinul n este o aranjare de n² numere într-un pătrat, în așa fel încât toate numerele n din aceeași coloană, rând sau diagonală să dea adunate aceeași constantă. Un pătrat magic normal conține întregii de la 1 la n²
Pătrate magice exista pentru toate ordinele n ≥ 1 în afară de n = 2, deși cazul de ordine n = 1 este trivial - constă dintr-o singură celulă conținând numărul 1. Cel mai mic caz netrivial, arătat alături, este de ordinul 3.
Introducere
Fie progresia aritmetică 1, 2, 3, 4, ... 36 (pătrat de ordinul 6) și dispunerea numerelor pe două rânduri în zigzag:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
Aceasta rezultă în faptul că orice pereche de numere aliniate vertical dă aceeași sumă, știind că la deplasarea înainte în coloane numerele de sus cresc cu o unitate, pe când cele de jos scad. Suma în toate cazurile este aceea a extremelor:
Dacă se aranjează ansamblul numerelor în șase rânduri:
1
2
3
4
5
6
12
11
10
9
8
7
13
14
15
16
17
18
24
23
22
21
20
19
25
26
27
28
29
30
36
35
34
33
32
31
suma în diferitele coloane este necesar egală, fiindcă numerele sunt grupate în perechi ca și în primul caz (se pot compara perechile de rânduri 1-6, 2-5 și 3-4 cu dispunerea originală). Acum oarecum, cele trei perechi de coloane fiind (n/2), suma va fi:
ceea ce se numește constanta magică, care în cazul de față este de n×(n² + 1)/2 = 6×(36 + 1)/2 = 111.
Ordinul n
3
4
5
6
7
8
9
10
11
12
13
M 2(n)
15
34
65
111
175
260
369
505
671
870
1105
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Se vede că pătratul precedent nu este un pătrat magic, pentru că aranjând numerele de manieră consecutivă, sumele cifrelor din fiecare rând cresc de fiecare dată. Există șase serii de numere între 1 și 36, a căror sumă, fără să se repete niciunul, este constanta magică. Dacă în loc de dispunerea precedentă se plasează numerele în ordine consecutivă, se obține o dispunere în care numerele din diagonala principală pot fi scrise sub forma (a-1)×n + a.
Calculând suma, rândurile a merg de la 1 la n:
Din nou constanta magică. Mai mult, orice serie de șase valori în care nu sunt două din același rând sau din aceeași coloană prin adunare va da constanta magică. Scriind termenul i, j al matricei ca (i-1)×n + j și luând șase termeni oarecare cu condiția ca nici i, nici j să nu se repete, și să varieze de la 1 la n, ecuația rezultată este aceeași ca și în cazul anterior, iar suma la fel, adică constanta magică.
Cum se și poate demonstra, numărul de serii posibile de n numere care îndeplinesc condiția anterioară este n!, 720 în pătrate de ordinul 6, și nici chiar toate sunt posibile, fiind dat că s-au obținut șase care nu sunt incluse printre ele. Prin definiție, fiind posibil să se construiască (n²)! matrice în care nici un termen să nu se repete și în care să existe cel puțin n! (de fapt mult mai multe) combinații de numere care prin adunare dau constanta magică, se înțelege intuitiv că ceea ce ar fi magic despre pătrat este că, având atâtea posibilități, să fie imposibil să se construiască un pătrat magic.
De ordinul 3 există doar un pătrat magic (variațiile diferite se pot obține prin rotație sau oglindire), în 1693Bernard Frénicle de Bessy a stabilit că există 880 pătrate magice de ordinul 4[1], ulterior se găsiseră 275.305.334 de pătrate magice de ordinul 5; numărul de pătrate magice de ordin mai mare este necunoscut, dar după estimările lui Klaus Pinn și ale lui C. Wieczerkowski realizate în 1998 cu ajutorul metodelor Monte Carlo și ale mecanicii statistice există (1,7745 ± 0,0016) × 1019 pătrate de ordinul 6 și (3,7982 ± 0,0004) × 1034 de ordinul 7.
În ceea ce privește ordinele inferioare, este evident că de ordinul unu există numai un pătrat magic, 1 , iar de ordinul 2 nu există niciunul, ceea ce poate fi demonstrat în figura pătratului magic a, b, c, d; pentru ca această dispoziție să fie un pătrat magic ar fi trebuit să se îndeplinească următoarele ecuații (M fiind constanta magică sau orice altă cantitate, dacă este dorită):
a
b
c
d
a + b = M
a + c = M
a + d = M
b + c = M
b + d = M
c + d = M
scriind sistemul de ecuații de manieră matricială și determinând rangul matricei de coeficienți, se obține că este trei, pe când numărul de necunocute este patru, ca urmare sistemul are doar soluția trivială a = b = c = d = M/2, fiind imposibil să se construiască un pătrat magic în care cele patru cifre să fie distincte.
Istorie
3
9
2
3
40
7
8
1
30
În China antică, se cunoșteau pătratele magice încă din Mileniul al III-lea î.Hr., după cum atestă Lo Shu. După legendă, într-o bună zi se revărsă un râu; oamenii, înfricoșați, încercară să aducă o ofrandă zeilor râului Lo (unul dintre cele revărsate) pentru a-i calma furia. Totuși, de fiecare dată când făceau aceasta, apărea o broască țestoasă care încercuia ofrandele fără să le accepte, până când un băiat își dădu seama de marcajele speciale de pe carapacea ei și așa putură să ofere cantitatea cerută (15), și să mulțumească zeul, care readuse apele la nivelul lor.
Au cunoscut și combinații de această clasă indienii, arabii, egiptenii și grecii. La pătrate asemănătoare, diferitele culturi au atribuit proprietăți astrologice și divinatorii variate, fiind de numeroase ori marcate în talismane. Așa cum reia Cornelius Agrippa în Despre filozofia ocultă III (1533), pătratul de ordinul trei(15) era consacrat zeului Saturn, cel de patru(34) lui Jupiter, cel de cinci(65) lui Marte, cel de șase(111) Soare, cel de șapte(175) lui Venus, cel de opt(260) lui Mercur și cel de nouă(369)Lunei; o atribuție similară se poate găsi în astrologia hindusă.
Introducerea pătratelor magice în occident se poate atribui lui Emanuel Moschopoulos, în jurul secolului al XVI-lea, autorul unui manuscris în care pentru prima oară au fost explicate câteva metode pentru a le construi. Mai târziu, studiul proprietăților acestor pătrate a atras atenția unor mari matematicieni, care au dedicat subiectului câteva opere chiar cu toată inutilitatea practică a pătratelor magice. Printre ei se pot cita Stifel, Fermat, Pascal, Leibnitz, Frénicle de Bessy, Bachet de Méziriac, La Hire, Saurin, Euler, ... se poate zice că nici un matematician nu a putut rezista farmecelor pătratului magic.
Pătratul magic al lui Albrecht Dürer
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
Pătratul magic al lui Albrecht Dürer, sculptat în opera sa Melancolía este considerat primul din artele europene. În pătratul de ordinea patru se obține constanta magică (34) în rânduri, coloane, diagonale principale, și în cele patru submatrici de ordinul (2) în care se poate împărți pătratul, adăugând numerele din colțuri, cele patru numere centrale, numerele centrale ale primelor și ultimelor rânduri (sau coloane) etc. și cifrele centrale ale ultimului rând 1514 fiind anul creației operei.
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
16
3
2
13
5
10
11
8
9
6
7
12
4
15
14
1
Câteva dispoziții în pătratul magic al lui Albrecht Dürer care se adună ca să formeze constanta magică.
Constanta magică a pătratului este 33, vârsta lui Iisus Cristos în timpul Pasiunii. Structural, este forte asemănătoare pătratului magic din Melancolia, dar două numere din pătrat, (12 și 16) sunt reduse cu două unități (10 și 14) iar de aceea apar repetiții. Aceasta permite să se reducă constanta magică cu 1.
Construcția Pătratelor Magice
Sunt numeroase forme de a construi un pătrat magic, dar cele mai simple consistă în a urmări anumite configurații sau formule care produc rezultate regulate. Mai mult, se poate să se impună condiții adiționale pătratului, obținându-se pătrate bimagice, trimagice etc. Prin analogie, se pot construi cercuri, poligoane și cuburi magice.
Nu există o metodă generală pentru a construi pătrate magice de orice ordin, fiind necesar să se facă distincția între cele de ordin impar, cele de ordin multiplu de 4 și restul de ordin par (4×m + 2)
Pătrate magice de ordin impar (I)
Aceste pătrate pot fi generate cu metoda publicată în 1691 de Simon de la Loubere, numită câteodată metoda siameză, metodă cunoscută de astrologii orientali. Începând în căsuța centrală a primului rând cu primul număr, umplem diagonala ruptă cu următoarele, în sens NV (sau NE). Odată umplută prima diagonală, este coborâtă de o poziție și se umple a doua în același sens ca și prima, apoi repetând pașii anteriori până se termină pătratul.
Evident, se putea începe în orice căsuță centrală a rândurilor sau coloanelor perimetrale, fiind în fiecare caz direcția diagonalelor în afara pătratului și sensul deplasării o dată terminată fiecare diagonală dat prin poziția relativă din centrul pătratului în ceea ce privește căsuța centrală.
Rezultă evident că începând cu orice altă căsuță suma rândurilor și a coloanelor va fi constanta magică, dat fiind că poziția relativă a cifrelor va fi aceeași ca și în cazul anterior; totuși, în paralela diagonală a direcției umplute nu se confirmă aceste condiție (confirmată în cealaltă). De fapt, alegerea inițială particulară a căsuței inițiale răspunde necesității ca în diagonala paralelă direcției care trebuie umplută cele cinci numere centrale ale seriei să fie plasate consecutiv dat fiind că orice alte cinci numere consecutive nu se vor aduna la constanta magică.
Pătrate magice de ordin impar (II)
25
18
37
Pasul întâi: Se scriu numerele de la 1 la n². Se scrie 1 în căsuța superioară a rombului și se urmează în formă oblică ca și în exemplul de mai jos. Pătratul magic va fi unul înscris în rombul format.
1
6
2
11
7
3
16
12
8
4
21
17
13
9
5
22
18
14
10
23
19
15
24
20
25
Pasul al doilea: Transferăm numerele din colțurile rombului în căsuțele goale în partea opusă a rombului.
1
6
2
11
24
7
20
3
16
4
12
25
8
16
4
21
17
5
13
21
9
5
22
10
18
1
14
22
10
23
6
19
2
15
24
20
25
Pasul al treilea: Scoatem colțurile rombului: acum avem un pătrat magic de ordin impar.
11
24
7
20
3
4
12
25
8
16
17
5
13
21
9
10
18
1
14
22
23
6
19
2
15
Pătrate magice de ordin multiplu de 4
Se construiește un pătrat cu numerele dispuse consecutiv (să se vadă al doilea pătrat de ordinea 6 în introducere), dispoziție în care știm că suma diagonalelor este constanta magică. O dată făcut, și conservând submatricea centrală de ordinul n/2 și cele din colțuri de ordinul n/4, învârtim de 180º numerele care rămân în jurul centrului pătratului, sau, dacă se preferă sunt puse în ordin descrescător (în ambele cazuri rezultatul este același).
Plecând de la aceeași dispoziție și alegând patroane simetrice similare numerelor a fi conservate se pot construi pătrate magice diferite de cele obținute înainte, ca și următoarele:
Pătrate magice de ordin multiplu de 4n plus 2
Pentru a construi această clasă de pătrate magice se poate folosi metoda LUX. Se bazează în parte pe metoda lui la Loubere, care se folosește în construcția pătratelor magice de ordin impar (a se vedea mai sus).
Ca exemplu, o să construim un pătrat magic de latura zece.
Pasul întâi:
Regrupăm căsuțele în grupuri de 2x2, și le etichetăm pe fiecare în parte cu forma următoare:
-Pătratele din primele k+1 rânduri, unde k este împărțirea completă a mărimii pătratului în patru, sunt etichetate cu litera L (3 rânduri în cazul acesta).
-Pătratele rândului următor se etichetează cu litera U.
-Pătratele rândurilor rămase se etichetează cu litera X.
Aceste litere ne vor arăta pe urmă cum să umplem fiecare pătrat de 2x2.
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
U
U
U
U
U
X
X
X
X
X
Pasul al doilea:
Se schimbă pătratul U central cu pătratul L imediat superior.
L
L
L
L
L
L
L
L
L
L
L
L
U
L
L
U
U
L
U
U
X
X
X
X
X
Pasul al treilea
Etichetăm fiecare pătrat de 2x2 cu un număr, ghidându-ne după metoda lui la Loubere. Cu această formă indicăm în ce ordine se va umple fiecare subpătrat.
17
24
1
8
15
L
L
L
L
L
23
5
7
14
16
L
L
L
L
L
4
6
13
20
22
L
L
U
L
L
10
12
19
21
3
U
U
L
U
U
11
18
25
2
9
X
X
X
X
X
Pasul al patrulea
Acum, subpătratului al i-lea îi corespund numerele 4i-3, 4i-2, 4i-1 și 4i. De exemplu, subpătratului 10 îi corespund numerele 37, 38, 39 și 40.
Tot ce ne mai rămâne să știm este cum să plasăm cele patru numere în subpătratul corespunzător, și aici intră în joc etichetetele LUX.
al patrulea număr
primul număr
al doilea număr
al treilea număr
Subpătrat tip L
primul număr
al patrulea număr
al doilea număr
al treilea număr
Subpătrat tip U
primul număr
al patrulea număr
al treilea număr
al doilea număr
Subpătrat tip X
După cum se poate vedea, literele ne spun forma pe care o iau numerele așezându-se în fiecare subpătrat.
Cu toate acesete elemente se poate construi pătratul.
68
65
96
93
4
1
32
29
60
57
66
67
94
95
2
3
30
31
58
59
92
89
20
17
28
25
56
53
64
61
90
91
18
19
26
27
54
55
62
63
16
13
24
21
49
52
80
77
88
85
14
15
22
23
50
51
78
79
86
87
37
40
45
48
76
73
81
84
9
12
38
39
46
47
74
75
82
83
10
11
41
44
69
72
97
100
5
8
33
36
43
42
71
70
99
98
7
6
35
34
Variante
Pătrate magice ezoterice
N.B. Pentru a se vedea comparările, pentru pătratele magice ezoterice, s-au luat alte culori, diferite decât cele folosite până acum.
Un pătrat magic ezoteric, folosește criterii mai restrictive în ceea ce privește condițiile unui pătrat magic, în așa fel încât să existe una pentru fiecare n. În continuare sunt descrise condițiile.
Proprietate de echivalență
21
26
25
27
29
22
8
1
6
3
5
7
4
9
2
În sens ezoteric, se consideră numai pătratele magice care au aceleași cifre ca și numărul căsuțelor (care urmăresc seria naturală de la 1 la n²). Pătratul din stânga nu este un pătrat magic ezoteric. În acest caz este rezultatul unui pătrat magic de n=3 a căror cifre au fost adăugate 20 (a fi comparat cu pătratul original din dreapta).
Proprietatea colțurilor
În sens ezoteric, un pătrat magic trebuie să îndeplinească unele condiții de sumă a colțurilor lui (Pe care le numim Cifra magică-2, sau de al doilea ordin). Explicația cum se alfă:
Dacă numim Compoziție sumarea numerelor care compun pătratul magic: C= sum (1+2+3....), sau C= ((n²+1)×(n²/2) ...
...și dacă numim Numărul bază (Nb) Compozăția împărțită la numărul căsuțelor care compun pătratul, vom avea Nb= C / (n²).
Obținem și Cifra magică, Înmulțind Numărul bază cu n Cm=Nb×n (sau invers, obținem Nb, împărțind cifra magică la n Nb= Cm/n ).
r
_
_
s
_
_
_
_
_
_
_
_
t
_
_
u
r
_
s
_
_
_
t
_
u
Și fiind Cifra magică-2 suma colțurilor, atunci: Cm2= r+s+t+u
Deci Cm2, suma colțurilor Cm2= Cm - (Nb( n-4))
Sau (plecând de la faptul că Cm=Nb×n) : Cm2= Nb×n - (Nb(n-4)).
Sau reducând : Cm2= 4Cm / n.
Se semnalează în figuri căsuțele din colțuri, pentru pătrate de n=4 și n=3
Se deduce că dacă pătratul are mai puține colțuri decât 4, atunci această cifră este adunată, și dacă este mai mare decât 4 colțuri, este scăzută. Pentru cazul în care sunt exact 4 colțuri, nici nu este adunată nici scăzută, sau adunată și scăzută,(cum este preferat să fie considerat).
Putem să verificăm că în pătratul magic de 4 suma celor 4 colțuri Cm2 = Cm (Cifra magică-2 = Cifra magică).
Iar suma cifrelor care formează o cruce (CRUX) (cele care sunt în mijloc între două colțuri adiacente), au ca sumă Cm2. Particularitatea n = par/impar produce două cazuri.
_
C
_
R
_
U
_
X
_
_
_
C1
C2
_
_
_
_
_
_
_
_
R1
_
_
_
_
U!
R2
_
_
_
_
U2
_
_
_
_
_
_
_
_
X1
X2
_
_
Pentru cazul unde n=impar: Cm2= C +R +U +X (figura din stânga)
Și pentru cazul unde n=par cele două căsuțe adiacente care formează o cruce în aceleași condiții, doar că în acest caz fiind două grupuri de 4 căsuțe, este de două ori CM ; =2 Cm2): Cm2=(C1 +C2 +R1 +R2 + U1 +U2 +X1 +X2 )/2 (figura din dreapta)
Se arată un pătrat de n=3 ca exemplu de caz par, și unul de n=6 ca exemplu de caz impar. Să se observe că în cazul impar, se iau cele două căsuțe centrale de CRUX, motivul, pentru că trebuie împărțit după aceea în doi.
S-a remarcat că în tablă exemplul arătat despre pătratul magic cu cazul unde n= 7 : aplicat este C=1225 ; Nb=25 ; Cm= 25×7=175 ; Cm2= 175- (25(7-4)=100
Se poate verifica Cm2=R+S+T+U , (colțurile, în bleu deschis 22 + 4 + 46 + 28 ) = 100
În același mod se poate verifica Cm2=C+R+U+X ,(centrele crucii, en turquoise închis 41 + 13 + 9 + 37 ) = 100
22
47
16
41
10
35
4
5
23
48
17
42
11
29
30
6
24
49
18
36
12
13
31
7
25
43
19
37
38
14
32
1
26
44
20
21
39
8
33
2
27
45
46
15
40
9
34
3
28
.
Latura n a pătratului
Căsuțe n×n
Sumare(n²+1)×(n²/2)
Cifra magică C/n
Număr bază Cm/n
Cifra magică-2 Cm2= 4Cm / n
n
n²
C
Cm
Nb
Cm2
1
1
1
1
1
4 Non mag.
2
4
10
5
2,5
10 Non. mág.
3
9
45
15
5
20
4
16
136
34
8,5
34
5
25
325
65
13
52
6
36
666
111
18,5
74
7
49
1225
175
25
100
8
64
2080
260
32,5
130
9
81
3321
369
41
164
Se poate înțelege că pătratul de 1 nu are 4 colțuri, și totodată a lui cifră magică-2, este 4, nefiind posibil să se adune mai mult decât 1, nu poate fi un pătrat magic ezoteric.
Pătratul de doi, chiar dacă are 4 colțuri, a lui cifră magică-2 face să apară un rezultat de 10, ceea ce este imposibil să rezulte. Se explică mai sus în acest articol de ce un pătrat magic n=2, nu poate fi (Cm nu are rezultat), și acum de ce nu este ezoteric.
Proprietăți poziționale
Ceea ce face ca un pătrat magic ezoteric să fie ordonat sunt îndeplinirea unor alte condiții care sunt lejer diferite în pătratele cu n-par pe lângă cele cu n-impar. (același pătrat rotit sau reflectat nu mai rămâne ordonat dar continuă să fie ezoteric.
n-impar: Nb ocupă căsuța centrală. Cifra cea mai mare este în susul căsuței centrale și cea mai mică dedesubt. Colțul r este ocupat de cifra Nb-(n/2-(1/2)) și colțul opus u de cifra Nb+(n/2-(1/2)). Colțul s este ocupat de cifra n/2+(1/2) și căsuța opusă t, de 2×Nb-(cifra s), sau, ceea ce dă același rezultat, de cifra cea mai mare a pătratului magic, - (n/2-(1/2)).
n-par : Căsuța r (prima), este ocupată de cifra n, cifra 1 ocupă căsuța s, și ultima cifră, diagonala t, și căsuța u=t+s-r. Dacă este par, nu există căsuță centrală, și pentru același Nb, nu este întreg, și nu ocupă nici o căsuță.
Pătratul magic Renato
1
399
3
397
396
395
7
8
9
391
390
12
13
14
386
385
384
18
382
20
21
22
23
377
376
375
374
28
29
371
370
32
33
367
366
365
364
38
39
40
41
359
43
357
45
46
354
48
352
351
350
349
53
347
55
56
344
58
342
60
61
62
63
64
336
335
334
68
332
331
330
329
73
327
326
325
77
78
79
80
81
319
83
317
85
315
87
88
312
311
91
309
308
307
306
96
97
98
99
301
300
102
103
104
296
106
294
108
292
291
290
289
113
287
115
285
117
118
119
281
121
279
123
277
276
275
127
128
129
271
270
132
133
134
266
265
264
138
262
140
141
259
143
257
256
146
147
148
252
150
250
249
153
247
246
245
244
158
159
160
161
239
238
237
236
235
234
233
169
231
170
172
173
174
175
176
177
178
222
180
200
199
198
197
196
195
194
193
212
190
191
209
208
207
206
205
204
203
202
201
220
219
218
217
216
215
214
213
192
210
211
189
188
187
186
185
184
183
182
181
240
162
163
164
165
166
167
168
229
171
230
232
228
227
226
225
224
223
179
221
260
142
258
144
145
255
254
248
149
251
151
152
253
154
155
156
157
243
242
241
280
122
278
124
125
126
267
273
272
130
131
269
268
274
135
136
137
263
139
261
101
299
298
297
105
286
107
293
109
110
111
112
288
114
295
116
284
283
282
120
320
82
318
84
305
86
314
313
89
90
310
92
93
94
95
316
304
303
302
100
340
339
338
324
65
66
67
333
69
70
71
72
328
74
75
76
337
323
322
321
360
42
343
44
356
355
47
353
49
50
51
52
348
54
346
345
57
358
59
341
380
362
378
24
25
26
27
373
372
30
31
369
368
34
35
36
37
363
379
361
381
2
398
4
5
6
394
393
392
10
11
389
388
387
15
16
17
383
19
400
Acesta este pătratul magic "RENATO" al cărui autor este Jorge Egúsquiza Loayza. Acest pătrat magic care conține numerele de la 1 la 400 are suma de 4010 în direcțiile orizontale, verticale și diagonale. Crearea lui a fost posibilă folosind o metodă de creat pătrate magice de dimensiuni mari. Această metodă se bazează pe extrapolarea numerelor folosind o succesiune logică de inversare, unde se schimbă un număr superior cu unul inferior:
Numărul 2 de pe prima linie se inversează, schimbându-l cu numărul 382, care ia locul numărului 19, care trece în locul lui 399, și care se termină în căsuța numărului 2. Este o metodă logică de inversare a colțurilor.
Conflitto musulmano nel Gansu (1927-1930)parte della guerra civile cineseData1927 - 1930 LuogoGansu, Qinghai, Ningxia EsitoVittoria del Guominjun Schieramenti Musulmani ribelliSupporto da: Cricca del Fengtian Guominjun Comandanti Ma TingxiangMa ZhongyingSupporto da: Zhang Zuolin Feng YuxiangMa LinMa Hongbin EffettiviMusulmani cinesiEsercito del Guominjun, incluse forze musulmane non ribelli Voci di guerre presenti su Wikipedia Manuale Il conflitto musulmano nel Gansu fu quando una coalizione ...
.270 Winchester Cuatro cartuchos .270 Winchester, montando distintos tipos de balas.Tipo FusilPaís de origen Estados UnidosHistoria de producciónDiseñador Winchester Repeating Arms CompanyDiseñada 1923Fabricante Winchester Repeating Arms CompanyProducción 1925 - al presenteEspecificacionesBasada en .30-03 SpringfieldTipo de vaina Abotellada sin pestaña, de percusión centralCalibre 7 mm (0,276 plg)Diámetro de cuello 7,8 mm (0,307&...
كابوتيرا الإحداثيات 39°10′31″N 8°58′15″E / 39.1751871°N 8.9708519°E / 39.1751871; 8.9708519 [1] تقسيم إداري البلد إيطاليا[2] خصائص جغرافية المساحة 68.49 كيلومتر مربع (9 أكتوبر 2011)[3] ارتفاع 54 متر عدد السكان عدد السكان 23583 (1 يناير 2018)[4] الكثافة...
No debe confundirse con Partido Comunista de Chile. Partido Comunista Chileno (Acción Proletaria) Secretario/a general Eduardo ArtésFundación 9 de noviembre de 1979Precedido por Partido Comunista RevolucionarioEslogan «¡A refundar Chile!»Ideología ComunismoMarxismo-leninismoEstalinismo[1]Patriotismo socialista InternacionalismoAntirrevisionismoAntiimperialismoPosición Extrema izquierdaMiembro de Unión Patriótica Coaliciones históricasMovimiento de Izquierda Democrática Alle...
In this Spanish name, the first or paternal surname is Milans del Bosch and the second or maternal family name is Ussía. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jaime Milans del Bosch – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template me...
Former theater in Manhattan, New York Times Square TheaterTimes Square Theater, with entrance to Apollo Theater (left), 1922Address217 West 42nd StreetNew York CityUnited StatesCoordinates40°45′24″N 73°59′16″W / 40.75667°N 73.98778°W / 40.75667; -73.98778OwnerCity and State of New YorkTypeFormer Broadway and movieCapacity1,032ConstructionOpenedSeptember 30, 1920Closed1990Years active1920–1934 (Broadway)1934–1990 (films)ArchitectEugene De RosaTenantsNew ...
Do Xدو إكس مجهزة بنسخة مبكرة من محركات بريستول جوبيترمعلومات عامةالنوع طائرة رحلات، طائرة قاربالتطوير والتصنيعالصانع دورنير للطائراتالمصمم الدكتور كلود دورنيرالكمية المصنوعة 3سيرة الطائرةدخول الخدمة أكتوبر 1930 أول طيران 12 يوليو 1929[1]الخدمةالمستخدم الأساسي ريجيا ايرون
Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW • CAPES • Google (N • L • A) (Fevereiro de 2017) Brasão de Volta Redonda Esta é a lista de prefeitos do município de Volta Redonda, estado brasileiro do Rio de Janeiro. Emancipada em 17 de julho de 1954, ao longo de sua História, Volta Redonda já teve dezenove pre...
American college basketball season 2018–19 Alabama Crimson Tide men's basketballNIT, first roundConferenceSoutheastern ConferenceRecord18–16 (8–10 SEC)Head coachAvery Johnson (4th season)Assistant coaches John Pelphrey (3rd season) Antoine Pettway (7th season) Yasir Rosemond (2nd season) Home arenaColeman ColiseumSeasons← 2017–182019–20 → 2018–19 Southeastern Conference men's basketball standings vte Conf Overall Team W L PCT W ...
Swiss actor You can help expand this article with text translated from the corresponding article in German. (March 2020) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the Engl...
Heraldic system of Nigeria This article is about heraldry in Nigeria in general. For the country's public heraldry specifically, see Coat of arms of Nigeria and Seal of the President of Nigeria. Nigerian heraldry is the system of heraldry that exists in Nigeria. It dates to the country's pre-colonial period, and due to an absence of a central heraldic authority, it is currently largely unregulated. Components Although Nigeria's hereditary signifiers are primarily oral (e.g. oriki) and perform...
Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (вересень 2023) Напівзакриті дебюти виникають після першого ходу білих 1. d4 та �...
Conquista Entidad subnacional BanderaEscudo ConquistaLocalización de Conquista en Brasil ConquistaLocalización de Conquista en Minas Gerais Mapa interactivoCoordenadas 19°56′13″S 47°32′31″O / -19.936944444444, -47.541944444444Entidad Municipio de Brasil • País Brasil • Estado Minas GeraisSuperficie • Total 618 km²Altitud • Media 780 m s. n. m.Población (2021) • Total 6997 hab. • Densi...
Third-sector Japanese railway company This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Yagan Railway – news · newspapers · books · scholar · JSTOR (January 2021) (Learn how and when to remove this template message) An Aizu Kinugawa Line train pulling out of Ryūōkyō Station, 2013 The Yagantetsudo Railway Co...
Amal Nasser el-DinLahir31 Juli 1928 (umur 95)Tempat lahirDaliyat al-Karmel, Mandat PalestinaKnesset8, 9, 10, 11Faksi yang diwakili di Knesset1977–1988Likud Amal Nasser el-Din (Arab: أمل نصر الدين, kelahiran 31 Juli 1928) adalah seorang penulis dan mantan politisi Druze Israel yang menjabat sebagai anggota Knesset untuk Likud antara 1977 dan 1988. Biografi El-Din lahir di Daliyat al-Karmel saat era Mandat. Referensi Pranala luar Amal Nasser el-Din di situs web Knesset Per...
Italian crossover vocal group This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Italian Tenors – news · newspapers · books · scholar · JSTOR (November 2014) (Learn how and when to remove this template message) The Italian TenorsOriginItalyGenresPop, crossoverYears active2011 (2011)–presentMembers Sa...
COX-2 selective NSAID veterinary drug RobenacoxibClinical dataTrade namesOnsiorLicense data EU EMA: by INN ATCvet codeQM01AH91 (WHO) Legal statusLegal status CA: ℞-only EU: Rx-only Identifiers IUPAC name {5-Ethyl-2-[(2,3,5,6-tetrafluorophenyl)amino]phenyl}acetic acid CAS Number220991-32-2PubChem CID6433107DrugBankDB11455ChemSpider4938295UNIIZ588009C7CChEBICHEBI:76269ChEMBLChEMBL2107774CompTox Dashboard (EPA)DTXSID90176607 ECHA InfoCard100.210.035 Chemical and ...