Share to: share facebook share twitter share wa share telegram print page

Брахмагупта

Брахмагупта
санскр. ब्रह्मगुप्त
Имя при рождении санскр. ब्रह्मगुप्तः[4]
Дата рождения около 598[1][2][…]
Место рождения Бхинмал, Индия
Дата смерти около 670[3]
Место смерти
Страна Индия
Род деятельности математик, астроном
Научная сфера математика, астрономия
Логотип Викисклада Медиафайлы на Викискладе

Брахмагупта (или Брамагупта, санскр. ब्रह्मगुप्त, ок. 598 — 670) — индийский математик и астроном. Руководил обсерваторией в Удджайне. Оказал существенное влияние на развитие астрономии в Византии и исламских странах, стал использовать алгебраические методы для астрономических вычислений, ввёл правила операций с нулём, положительными и отрицательными величинами. До нашего времени сохранилось его основное сочинение «Брахма-спхута-сиддханта[англ.]» («Правильно изложенное учение Брахмы», или «Разъяснение совершенной системы Брахмы»). Большая часть сочинения посвящена астрономии, две главы (12-я и 18-я) — математике.

Биография

Брахмагупта родился приблизительно в 598 году. Это следует из книги «Брахма-спхута-сиддханта», в которой он сообщает, что написал этот текст в возрасте 30 лет в 628 году (550 год сакской эры)[6][7]. Брахмагупта родился в Бхилламале[англ.] в штате Раджастхан Северо-Западной Индии, который в то время был столицей страны династии Гурджара. Его отцом был Джишнугупта[8]. Вероятно, он прожил большую часть жизни в Бхинмале во время правления (и, возможно, под покровительством) правителя Вьяграмукхи[9], поэтому его нередко именуют Бхилламалачарья (учитель из Бхилламалы)[10]. Брахмагупта был руководителем астрономической обсерватории в Удджайне. Обсерватория, в которой также работал Варахамихира, была лучшей в древней Индии[8].

Голова Раху, желая отомстить Солнцу и Луне, иногда проглатывает их, вызывая таким образом солнечные и лунные затмения

На исследования Брахмагупты оказали серьёзное влияние его религиозные взгляды. Будучи правоверным индуистом, он критиковал космологические воззрения некоторых его современников, в частности точку зрения Ариабхаты, утверждающего что Земля есть вращающаяся сфера[11]. Брахмагупта спорил с Ариабхатой и о природе солнечных затмений[12]:

Среди людей есть такие, которые думают, что затмения вызываются не Головой [дракона Раху]. Это абсурдное мнение, ибо это она вызывает затмения, и большинство жителей мира говорят, что именно она вызывает их. В Ведах, которые есть Слово Божие, из уст Брахмы говорится, что Голова вызывает затмения. Напротив того, Ариабхата, идя наперекор всем, из вражды к упомянутым священным словам утверждает, что затмение вызывается не Головой, а только Луной и тенью Земли… Эти авторы должны подчиниться большинству, ибо всё, что есть в Ведах — священно.

Хотя Брахмагупта был знаком с работами Ариабхаты, неизвестно, был ли он знаком также с работами Бхаскары. Работы Брахмагупты содержат многочисленные критические замечания в адрес современных ему астрономов, а содержание «Брахма-спхута-сиддханты» свидетельствует о расколе среди индийских математиков того времени. Разногласия были обусловлены в значительной степени выбором астрономических параметров и теории. Критика теорий оппонентов Брахмагупты содержится в первых двенадцати главах «Брахма-спхута-сиддханты» и отсутствует в тринадцатой и восемнадцатой главах.

Арабский учёный Аль-Бируни в своей книге «Китаб аль-Хинд» (около 1035) проанализировал и описал идеи индийских астрономов. В своей работе он ссылается на Брахмагупту как самый крупный авторитет[13].

Основные труды

Известно два основных труда Брахмагупты: «Брахма-спхута-сиддханта» (ब्राह्मस्फुटसिद्धान्त) (628) и «Кхандакхадьяка» (खण्डखाद्यक) (665)[14].

Брахма-спхута-сиддханта

«Брахма-спхута-сиддханта»[англ.] («Усовершенствованное учение Брахмы», или «Пересмотр системы Брахмы»[15]) — самый известный труд Брахмагупты, посвящённый математике и астрономии. Трактат написан стихами и содержит только результаты без доказательств. Труд состоит из 25 глав[8] (в других источниках говорится о 24 главах и приложении с таблицами[10]).

Первые 10 глав, которые представляют собой типичный текст по астрономии того периода, часто рассматриваются отдельно как первая версия работы, так как существуют манускрипты, содержащие только эти главы. Этот текст носит название Дашадхьяйи[10]. В нём содержатся в частности расчёты средней и истинной долготы, вычисление суточного вращения, расчёт солнечных и лунных затмений, методы расчёта положения небесных тел с течением времени (эфемериды), их восходов и заходов, соединений[8].

Следующие 15 глав содержат значительные дополнения и уточнения к первым главам, а также главы по математике[8]. Математические главы дают представление о двух основных подходах индийских математиков: «математика процедур», или алгоритмы, и «математика семян», или уравнения. 12-я глава книги носит название «Математика», она посвящена простейшим арифметическим операциям, пропорциям, задачам на смешение и рядам, что составляло основную часть практической математики во времена Брахмагупты. 18-я глава, «Распылитель», имеет прямое отношение к алгебре, но поскольку такого термина ещё не существовало, названа по первой задаче, рассматриваемой в главе[11].

Во второй половине VIII века, когда багдадский халиф из династии Аббасидов Абу-ль-Аббас Абд-Аллах аль-Мамун (712—775) был с посольством в Индии, пригласил в Багдад учёного из Удджайна по имени Канках, который преподавал индийскую систему астрономии на основе «Брахма-спхута-сиддханта». Халиф заказал письменный перевод книги на арабский язык, который был осуществлён математиком и философом Ибрахимом аль-Фазари в 771 году[7][14]. Перевод, выполненный в виде таблиц — зиджа — с необходимыми пояснениями и рекомендациями, получил название «Большой Синдхинд». Известно, что этой работой пользовался ал-Хорезми для написания своих трудов по астрономии («Зидж ал-Хорезми») и арифметике («Книга об индийском счёте»). Считается, что перевод последней в XI веке на латинский язык сыграл решающую роль в распространении позиционной системы счисления[14].

«Брахма-спхута-сиддханта» была переведена китайскими математиками VII—IX веков (известно по крайней мере четыре перевода), позволив таким образом распространить десятичную систему среди китайских учёных[14]. В 1817 году две математические главы были переведены на английский Генри Томасом Колбруком[10].

В 860 году индийский математик Притхудака Свами написал комментарии к работе, которые носят название Васана-бхашья. От полных комментариев сохранилось только несколько манускриптов. Известно также несколько анонимных комментариев к полной версии сочинения и к первым десяти главам. В Индии работа Брахмагупты была опубликована в 1902 и 1966 годах[10].

Кхандакхадьяка

Вторая работа Брахмагупты, Кхандакхадьяка (A Piece Eatable), была написана в 665 году[11]. Она состоит из 8 глав. В этой работе Брахмагупта уточнил и упростил ряд астрономических расчётов, пользуясь во многом системой, предложенной Ариабхатой[13]. Кроме того, она включает интерполяционную формулу для вычисления синусов[8]. В VIII веке Кхандакхадьяка была переведена на арабский язык под названием «Арканд»[13].

Комментарии к Кхандакхадьяке были написаны в 864, 966, 1040, 1180 годах, некоторые из них не сохранились. Сама книга была напечатана в Калькутте в 1925 и 1941 годах. Перевод на английский язык осуществил Прабодх Чандра Сенгупта в 1934 году[10].

Вклад в математику

В своей работе Брахма-спхута-сиддханта Брахмагупта дал определение нуля как результат вычитания из числа самого числа. Он одним из первых установил правила арифметических операций над положительными и отрицательными числами и нулём, рассматривая при этом положительные числа как имущество, а отрицательные числа как долг. Далее Брахмагупта пытался расширить арифметику дав определение деления на ноль[8]. Согласно Брахмагупте[8][16],

  • Деление нуля на ноль есть ноль;
  • Деление положительного или отрицательного числа на ноль есть дробь с нулём в знаменателе;
  • Деление нуля на положительное или отрицательное число есть ноль.

Брахмагупта предложил три метода умножения многозначных чисел в столбик (основной и два упрощённых), которые близки к тем, что используются в настоящее время. Основной метод Брахмагупта назвал «гомутрика», что в переводе Ифра означает «как траектория мочи коровы» (англ. "like the trajectory of cow's urine")[8].

Брахмагупта также предложил метод приближённого вычисления квадратного корня, эквивалентный итерационной формуле Ньютона (Newton-Raphson), метод решения некоторых неопределённых квадратных уравнений вида ax2 + c = y2, метод решения неопределённых линейных уравнений вида ax + c = by, используя метод последовательных дробей[8].

Он определил сумму квадратов и кубов первых n чисел через сумму первых n чисел, утверждая что «Сумма квадратов есть сумма чисел, умноженная на удвоенное число шагов, увеличенное на единицу, и делённая на три. Сумма кубов есть квадрат суммы чисел до одного и того же числа»[16][16]. Формулы, которые можно записать как …, приводятся без доказательства[8].

В работе Кхандакхадьяка Брахмагупта предложил интерполяционную формулу второго порядка, являющуюся частным случаем выведенной более чем через 1000 лет интерполяционной формулы Ньютона — Стирлинга. Он использовал её для интерполяции значений синуса в составленных им тригонометрических таблицах[17]. Формула даёт оценку значения функции f при значении её аргумента a + xh (при h > 0 и −1 ≤ x ≤ 1), когда её значение уже известно в точках ah, a и a + h. Она записывается следующим образом:

где Δ — оператор восходящей конечной разности первого порядка, то есть

Формула Брахмагупты для четырёхугольника

Брахмагупта предложил формулу вычисления площади четырёхугольника, вписанного в окружность[8]. Формула Брахмагупты является обобщением формулы Герона для площади треугольника. А именно, площадь S вписанного в окружность четырёхугольника со сторонами a, b, c, d и полупериметром p равна

При этом сам Брахмагупта не уточнил, что формула верна только для четырёхугольников, которые можно вписать в окружность, поэтому некоторые историки полагают здесь ошибку Брахмагупты[8].

Известна ещё одна формула Брахмагупты для радиуса описанной окружности произвольного треугольника:

где a, b, c — стороны треугольника, ha, hb и hc — его высоты.

Тождество Брахмагупты

Тождество Брахмагупты утверждает, что произведение двух сумм двух квадратов само является суммой двух квадратов, причём двояким образом.

К примеру,

Теорема Брахмагупты

Теорема Брахмагупты утверждает, что AF = FD

Пусть имеется вписанный четырёхугольник, диагонали которого взаимно перпендикулярны. Опустим из точки пересечения диагоналей перпендикуляр на одну из его сторон. Будучи продолженным по другую сторону от точки пересечения диагоналей, этот перпендикуляр делит противоположную сторону четырёхугольника на две равные части.

Задача Брахмагупты

Задача Брахмагупты — построить с помощью циркуля и линейки вписанный четырёхугольник по четырём его сторонам[18]. Одно из решений использует окружность Аполлония.

Вклад в астрономию

Брахмагупта полагал Землю неподвижной (не вращающейся вокруг своей оси) и в своей работе Брахма-спхута-сиддханта указал продолжительность года как 365 дней 6 часов 5 минут и 19 секунд, в то же время в последующей работе Кхандакхадьяка продолжительность года указана как 365 дней 6 часов 12 минут и 36 секунд. Возможно, что второе значение было взято у Ариабхаты[8].

Астрономические представления Брахмагупты, изложенные в Брахма-спхута-сиддханта, свидетельствуют о высоком уровне его исследований и научной прозорливости. Так, в седьмой главе труда, которая называется «О затмении Луны», Брахмагупта опровергает представление о том, что Луна находится дальше от Земли, чем Солнце[19].

7.1. Если бы Луна была выше Солнца, то её ближняя к Солнцу половина всегда была бы освещена.

7.2. Аналогично, освещённая Солнцем часть Луны всегда была бы видна, а неосвещённая часть оставалась бы невидимой.

7.3. Яркость [освещённой части Луны] увеличивается в направлении Солнца. В конце светлого полумесяца половина освещена и другая половина темна. Таким образом, высота рогов полумесяца может быть вычислена.

Брахмагупта объясняет, что поскольку Луна ближе к Земле, чем Солнце, степень освещённости Луны зависит от взаимного расположения Солнца и Луны и может быть вычислена исходя из величины угла между этими двумя небесными телами.

Важным вкладом Брахмагупты в астрономию являются методы расчёта положения небесных тел с течением времени (эфемериды), их восходов и заходов, соединений, а также расчёта солнечных и лунных затмений. Брахмагупта подверг критике представления пуранической космологии о том, что Земля является плоской или полой. Он утверждал что Земля и небо имеют сферическую форму и что Земля движется. В 1030 году газневидский астроном Абу аль-Райхан аль-Бируни в своем труде «Та’рих аль-Хинд» прокомментировал работу Брахмагупты. Бируни отмечал, что на замечания критиков теории шарообразной Земли («Если бы это было так, камни и деревья будут падать с земли») Брахмагупта ответил:

Напротив, если бы это было так, то Земля не могла бы сохранять свою форму даже в течение минут. […] Все тяжёлые вещи притягиваются к центру Земли […] Земля одинакова со всех сторон. Все люди на Земле стоят, и все тяжёлые вещи падают на землю по закону природы, так устроена природа Земли, чтобы притягивать и держать вещи, также как природа воды — течь, огня — гореть, ветра — приводить в движение … Земля — это единственная низкая вещь, все предметы всегда вернутся к ней из любого направления, куда бы вы их не бросили, и никогда не поднимутся вверх от земли.

Брахмагупта, Брахма-спхута-сиддханта (628) (cf. al-Biruni (1030), Indica)

О силе тяжести Земли Брахмагупта говорил:

Тела падают на землю, так как это в природе Земли — притягивать их, так же как в природе воды — течь.

Thomas Khoshy, Elementary Number Theory with Applications, Academic Press, 2002, p. 567. ISBN 0-12-421171-2

Сочинения

Основной труд Брахмагупты, «Усовершенствованное учение Брахмы» («Брахма-спхута-сиддханта», 628)[20], содержит 25 разделов:

  1. О состоянии земного шара и форме неба и земли.
  2. Об оборотах светил и об определении времени; о том, как находить средние положения светил; об определении синуса дуги.
  3. О составлении таблицы светил.
  4. О трёх проблемах, а именно: о тени, о истекшей части дня и о гороскопе; а также о том, как выводить одно из них из другого.
  5. О том, как светила появляются из-за лучей Солнца и как они скрываются за ними.
  6. О том, как показывается молодой месяц, и о его двух рогах.
  7. О затмении Луны.
  8. О затмении Солнца.
  9. О тени Луны.
  10. О соединении и противостоянии светил.
  11. О широтах светил.
  12. О критике того, что содержится в книгах и таблицах, и о различении правильного от неправильного.
  13. Об арифметике и её применении в исчислении расстояний и в других случаях.
  14. Об уточнении среднего положения светил.
  15. Об исправлении таблицы светил.
  16. О точном исследовании трёх проблем.
  17. Об отклонении затмений.
  18. О точном определении появления молодого месяца и его двух рогов.
  19. О методе «куттака».
  20. О расчётах в размерах стихов и метрике.
  21. Об окружностях и инструментах.
  22. О четырёх мерах времени — по Солнцу, по восходу, по Луне и по лунным станциям.
  23. О знаках для чисел и цифр в стихотворных сочинениях по этому предмету.
  24. О доказательствах, не использующих математику.[источник не указан 4120 дней]

Вторая работа Брахмагупты, «Кхандакхадьяка» (655), также представляет собой фундаментальный труд по астрономии.

Публикации

  • Brahmagupta. Brahma-Sphuta-Siddhanta. New Delhi, 1966. vol. 1.

См. также

Примечания

  1. Архив по истории математики Мактьютор — 1994.
  2. Bell A. Brahmagupta // Encyclopædia Britannica (брит. англ.)Encyclopædia Britannica, Inc., 1768.
  3. https://www.britannica.com/biography/Brahmagupta
  4. Record #39509380, Record #5512168048998138410009, Record #262788383, Record #265765392, Record #210451344 // VIAF (мн.) — Даблин: OCLC, 2003.
  5. https://books.google.cat/books?id=aBHSc2hTfeUC&pg=PA181 — С. 181.
  6. Brahmagupta, Bhaskara, Henry-Thomas Colebrooke, 1817, p. xxxv–xxxvi.
  7. 1 2 Brahmagupta. Encyclopedia of World Biography (2006). Дата обращения: 20 августа 2013. Архивировано 21 сентября 2016 года.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 J. J. O'Connor, E. F. Robertson. Brahmagupta. MacTutor History of Mathematics archive. Дата обращения: 20 августа 2013. Архивировано 15 сентября 2013 года.
  9. Plofker, 2007, p. 418—419.
  10. 1 2 3 4 5 6 Brahmagupta. Complete Dictionary of Scientific Biography. Дата обращения: 20 августа 2013. Архивировано 21 сентября 2016 года.
  11. 1 2 3 Takao Hayashi. Brahmagupta. Энциклопедия Британника. Дата обращения: 20 августа 2013. Архивировано 16 сентября 2013 года.
  12. Еремеева А. И., Цицин Ф. А. История астрономии. Указ. соч., с. 111.
  13. 1 2 3 Katz V. J., Imhausen A. История человечества. — Издательский дом Магистр-Пресс, 2003. — P. 410—412. — 796 p. (недоступная ссылка)  (рус.)
  14. 1 2 3 4 Pearce Ian. Brahmagupta, and the influence on Arabia. MacTutor History of Mathematics archive. Дата обращения: 20 августа 2013. Архивировано 15 сентября 2013 года.
  15. Брахмагупта // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  16. 1 2 3 Plofker, 2007, p. 428—434.
  17. Joseph, George G. The Crest of the Peacock. — Princeton, NJ: Princeton University Press, 2000. — С. 285—286. — ISBN 0-691-00659-8..
  18. В. В. Прасолов, Задачи по планиметрии.
  19. Plofker, 2007, p. 419—420.
  20. Брахмагупта // Большой Энциклопедический словарь. 2000

Литература

  • Ван дер Варден Б. Л. Уравнение Пелля в математике греков и индийцев. Успехи математических наук, 31, вып. 5(191), 1976, с. 57-70.
  • Володарский А. И. Очерки истории средневековой индийской математики. — М.: Наука, 1977.
  • Юшкевич А. П. История математики в средние века. — М.: Физматгиз, 1961.
  • Gupta R. C. Brahmagupta’s formulas for the area and diagonals of a cyclic quadrilateral. The Mathematics Education, 8, 1974, p. 33-36.
  • Sarasvati Amma T. A. Geometry in ancient and medieval India. Delhi: Motilal Banarsidass, 1979.
  • История математики, т.1, М., 1970.
  • Еремеева А. И., Цицин Ф. А. История астрономии (основные этапы развития астрономической картины мира). Изд. МГУ, 1989.

Ссылки

Read other articles:

American singer For other people named Jack Ingram, see Jack Ingram (disambiguation). Jack IngramIngram performing in 2014Background informationBirth nameJack Owen IngramBorn (1970-11-15) November 15, 1970 (age 52)OriginThe Woodlands, Texas, U.S.GenresCountryOccupation(s)Singer-songwriterInstrument(s)Vocals, guitarYears active1992–presentLabelsRhythmic, Rising Tide, Lucky Dog, Columbia, Big Machine, BlasterWebsitejackingram.netMusical artist Jack Owen Ingram (born November 15, 1970) is...

 

Argentine footballer Sole Jaimes Personal informationFull name Florencia Soledad JaimesDate of birth (1989-01-20) 20 January 1989 (age 34)Place of birth Nogoyá, ArgentinaHeight 1.82 m (6 ft 0 in)[1]Position(s) StrikerTeam informationCurrent team FlamengoNumber 99Youth career2004–2008 Boca JuniorsSenior career*Years Team Apps (Gls)2008–2014 Boca Juniors 2009–2010 → River Plate (loan) 2014 Foz Cataratas 2015 São Paulo 2015–2017 Santos 29 (21)2018 Dalian Q...

 

Parcé-sur-Sarthe Kommun Land  Frankrike Region Pays de la Loire Departement Sarthe Arrondissement La Flèche Kanton Sablé-sur-Sarthe Koordinater 47°51′N 0°12′V / 47.850°N 0.200°V / 47.850; -0.200 Yta 40,58 km²[1] Folkmängd 2 086 (2020-01-01)[2] Befolkningstäthet 51 invånare/km² Postnummer 72300 INSEE 72228 Geonames 6442650 OSM-karta 107451 Kommunens läge i regionen Pays de la Loire i Frankrike Kommunens läge i regionen Pays de ...

German automotive brand and division of Mercedes-Benz AG For cars with artificial intelligence, see Intelligent car. Smart Automobile Co., Ltd.TypeJoint ventureIndustryAutomotiveFoundedFebruary 1994; 29 years ago (February 1994) (marque)2019; 4 years ago (2019) (joint venture)HeadquartersNingbo, ChinaKey peopleTong Xiangbei (CEO)ProductsElectric vehiclesOwnersMercedes-Benz AG (50%)Zhejiang Geely Holding Group (50%)Subsidiariessmart Europe GmbHsmart Automobile Sa...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)   لمعانٍ أخرى، طالع الوثن (توضيح). الوثن  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظ

 

Johanneskirche Die Johanneskirche (auch Quartiergemeinde St. Johannes genannt) ist eine evangelisch-reformierte Kirche in der Stadt Basel. Sie befindet sich im Kannenfeld-Quartier im Stadtteil St. Johann Das Gotteshaus wurde im Jahr 1996 unter Denkmalschutz gestellt[1]. Im Jahre 1936 bauten Karl Egender und Ernst Friedrich Burckhardt als Gewinner eines Wettbewerbs die damals hoch moderne Johanneskirche (nach dem heiligen Johannes) mit Gemeindetrakt und Pfarrhaus. Der langgestreckte re...

Pour les articles homonymes, voir Expédition d'Irlande. Expédition d'Irlande de 1798 Informations générales Date 22 aout - 12 octobre 1798 Lieu Irlande Issue Victoire britannique Belligérants  République française Les Irlandais unis  Grande-Bretagne Royaume d'Irlande Commandants • Jean Humbert• Jean Sarrazin• Louis Fontaine • Charles Cornwallis• Gerard Lake Forces en présence 1 032 hommes +600 hommes 30 000 hommes Pertes 187 morts ou blessés844...

 

D 929 bei Tramezaïgues (Hautes-Pyrénées) Autobahnähnlich ausgebaute D 438 im Département Haute-Saône nahe Belfort Wegweiser mit Straßennummer D 35 im Département Seine-et-Marne Die Route départementale (deutsch Departement-Straße oder Departementsstraße) ist eine Straßenkategorie in Frankreich. Diese Straßen sind für den interkommunalen Durchgangsverkehr, teilweise auch für den Fernverkehr bestimmt und werden von den Départements verwaltet. Die Nummerierung...

 

Coordenadas: 34° 13' 57 N 85° 46' 13 O Sand Rock Localidade dos Estados Unidos Sand Rock Localização de Sand Rock em Alabama Sand Rock Localização de Sand Rock nos Estados Unidos Localização 34° 13' 57 N 85° 46' 13 O Condado Condado de Cherokee e Condado de DeKalb Estado  Alabama Tipo de localidade Cidade Características geográficas Área 11,7 km² - água 0,0 km² População (2006) 528 hab. (45 hab./km²) Códigos código FIPS 67920 Portal Es...

Franziskus von Sales Bauer Franziskus von Sales Bauer (26 Januari 1841 – 25 November 1915) adalah seorang Kardinal Gereja Katolik Roma Austria-Hungaria. Ia menjabat sebagai Uskup Brno (1882 - 1904) dan kemudian Uskup Agung Olomouc dari 1904 sampai kematiannya, dan diangkat menjadi kardinal pada 1911. Ia juga menjadi deputi Parlemen Moravia. Pranala luar Wikimedia Commons memiliki media mengenai František Saleský Bauer. Cardinals of the Holy Roman Church Diarsipkan 2014-08-26...

 

KПромо постер до аніме-серіалуケイ KПроєкт КЖанрбойовик, наукове фентезі[1][2]Аудиторіясьодзьо МанґаK: Memory of RedАвторGoRAІлюстраторКурое ЮіВидавецьKodanshaАудиторіясьодзьоЖурналAriaПеріод випуску28 травня 2012 — 15 серпня 2013Кількість томів3 МанґаK: Stray Dog StoryАвторGoRAІлюстрат

 

Stephan Lessenich, 2019 Stephan Lessenich (* 1965 in Stuttgart) ist ein deutscher Soziologe und Politiker (mut). Er war von 2013 bis 2017 Vorsitzender der Deutschen Gesellschaft für Soziologie und ist seit 2021 Direktor des Frankfurter Instituts für Sozialforschung. Inhaltsverzeichnis 1 Leben 2 Mitgliedschaften 3 Schriften (Auswahl) 4 Weblinks 4.1 Rezeption 5 Einzelnachweise Leben Lessenich studierte in den Jahren 1983 bis 1989 Politikwissenschaft, Soziologie sowie Geschichte an der Philipp...

Chinese artistic gymnast For other people named Zhang Nan, see Zhang Nan (disambiguation). In this Chinese name, the family name is Zhang. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Zhang Nan gymnast – news&#...

 

La ville, phénomène spatial et social organisé, n'est pas une invention du Moyen Âge. Souvent prolongement ou réactivation d’une ville antique préexistante, les villes au Moyen Âge ont connu un essor important et des formes et des modes de développement originaux. Le concept de ville médiévale dans l’Occident a notamment été défini par comparaison avec celui de ville du monde arabe, peut-être avec exagération. Toutefois le développement du « fait urbain » duran...

 

«miga» redirige aquí. Para otras acepciones, véase miga (desambiguación). Pan casero mostrando la miga del interior. Migas de Pastor en ciertas cocinas de España. La miga, a veces llamada migaja en España o migajón en México, es la parte blanda y esponjosa interior del pan. Al hornear la masa, su capa superficial se tuesta y endurece, desarrollándose la corteza. Ésta reduce la pérdida de humedad en el interior, quedando aireado y esponjoso. Los agujeros o cavidades de una miga se ...

Chilean actress In this Spanish name, the first or paternal surname is Lewin and the second or maternal family name is Gajardo. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Blanca Lewin – news · newspa...

 

1st century BCE King of Judea This article is about the Roman-appointed king of Judea. For other uses, see Herod, Herod the Great (film), and Herod the Great (play). HerodHerod's sarcophagus, displayed at the Israel MuseumRoman client king of JudeaReign37–4 BCE (Schürer)36–1 BCE (Filmer)[1]PredecessorMonarchy establishedSuccessor Herod Archelaus Herod Antipas Philip the Tetrarch Salome I Bornc. 72 BCEIdumea, Hasmonean JudeaDiedMarch–April 4 BCE (Schürer) or January–Apr...

 

Football clubJeonju MAG FCFull nameJeonju Made Axis Glory Futsal ClubFounded2009; 14 years ago (2009)GroundPalbok GroundHead coachLee Young-JinLeagueFK-League Home colours Away colours Jeonju Made Axis Glory Futsal Club, commonly known as Jeonju MAG FC (Korean: 전주 매그 FC), is a South Korean professional futsal club based in Jeonju, Jeollabuk-do. The club was founded in December 2009.[1] Honors FK-League Champions (4) : 2009–10, 2012–13, 2013�...

On 3 August, a Harry Potter-themed demonstration was held, openly criticised the monarchy, and demanded amendment of increasing royal prerogative and lèse majesté law.[1] The protest, which 200 people joined, featured a public speech by Anon Nampa. Paul Chambers, Southeast Asian politics scholar, noted, Such open criticism of Thailand’s monarch by non-elites at a public place within Thailand with the police simply standing by is the first of its kind in Thai history.[2] On...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sammakka Saralamma Jatara – news · newspapers · books · scholar · JSTOR (February 2019) (Learn how and when...

 
Kembali kehalaman sebelumnya