левым делителем нуля, если существует ненулевое такое, что
правым делителем нуля, если существует ненулевое такое, что
Далее всюду в данной статье кольцо считается нетривиальным, то есть в нём имеются элементы, отличные от нуля.
Элемент, который одновременно является и правым, и левым делителем нуля, называется делителем нуля. Если умножение в кольце коммутативно, то понятия правого и левого делителя совпадают. Элемент кольца, который не является ни правым, ни левым делителем нуля, называется регулярным элементом[2].
Ноль кольца называется несобственным (или тривиальным) делителем нуля. Соответственно, элементы, отличные от нуля и являющиеся делителями нуля, называются собственными (нетривиальными) делителями нуля.
Если не является левым делителем нуля, то равенство можно сократить на аналогично с правым делителем нуля. В частности, в области целостности сокращение на ненулевой множитель всегда возможно[3].
Множество регулярных элементов коммутативного кольца замкнуто относительно умножения.
Обратимые элементы кольца не могут быть делителями нуля[2]. Обратимые элементы кольца часто называют «делителями единицы», поэтому предыдущее утверждение можно сформулировать иначе: делитель единицы не может быть одновременно делителем нуля. Отсюда следует, что ни в каком теле или поле делителей нуля быть не может[4].
В коммутативном конечном кольце с единицей каждый ненулевой элемент либо обратим, либо является делителем нуля. Следствие: нетривиальное коммутативное конечное кольцо без делителей нуля является полем (существование в кольце единицы может быть строго доказано).
Линейно упорядоченное кольцо со строгим порядком (то есть если произведение положительных элементов положительно) не содержит делителей нуля[5], см. также ниже пример упорядоченного кольца с делителями нуля.
Нильпотентный элемент кольца всегда является (и левым, и правым) делителем нуля. Идемпотентный элемент кольца , отличный от единицы, также является делителем нуля, поскольку
Примеры
Кольцо целых чисел не содержит нетривиальных делителей нуля и является областью целостности.
В кольце вычетов по модулю если k не взаимно просто с m, то вычет k является делителем нуля. Например, в кольце элементы 2, 3, 4 — делители нуля:
В кольце матриц порядка 2 или более также имеются делители нуля, например:
Поскольку определитель произведения равен произведению определителей сомножителей, произведение матриц будет нулевой матрицей только если определитель по крайней мере одного из сомножителей равен нулю. Несмотря на некоммутативность умножения матриц, понятия левого и правого делителей нуля в этом кольце совпадают; все делители нуля — это вырожденные матрицы с нулевым определителем.
Пример упорядоченного кольца с делителями нуля: если в аддитивной группе целых чисел положить все произведения равными нулю, то получится упорядоченное кольцо, в котором любой элемент является делителем нуля (единица тогда не является нейтральным элементом для умножения, так что получается кольцо без единицы)[6][7].