Сравне́ние двух целых чиселпо мо́дулюнатурального числа — математическая операция, позволяющая ответить на вопрос о том, дают ли два выбранных целых числа при делении на один и тот же остаток. Любое целое число при делении на даёт один из возможных остатков: число от 0 до ; это значит, что все целые числа можно разделить на групп, каждая из которых отвечает определённому остатку от деления на . Эти группы называются классами вычетов по модулю, а содержащиеся в них целые числа — вычетами по модулю➤.
Предпосылкой к созданию теории сравнений стало восстановление сочинений Диофанта, которые были выпущены в подлиннике и с латинским переводом, благодаря Баше де Мезириаку, в 1621 году. Их изучение привело Ферма́ к открытиям, которые по значению существенно опередили своё время. Например, в письме к Френиклю де Бесси[фр.][4] 18 октября 1640 года он сообщил без доказательства теорему, впоследствии получившую название малой теоремы Ферма. В современной формулировке теорема утверждает, что если — простое число и — целое число, не делящееся на , то
.
Первое доказательство этой теоремы принадлежит Лейбницу, причём он открыл указанную теорему независимо от Ферма́ не позднее 1683 года и сообщил об этом с приведением точного доказательства Бернулли. Кроме этого, Лейбницем был предложен прообраз формулировки теоремы Вильсона.
Понятие и символьное обозначение сравнений было введено Гауссом, как важный инструмент для обоснования его арифметической теории, работа над которой была начата им в 1797 году. В начале этого периода Гауссу ещё не были известны труды его предшественников, поэтому результаты его работы, изложенные в первых трёх главах его книги «Арифметические исследования» (1801 год), были в основном уже известны, однако методы, которые он использовал для доказательств, оказались абсолютно новыми, имеющими высшую важность для развития теории чисел. Используя эти методы, Гаусс преобразовал все накопленные до него сведения, связанные с операциями сравнения по модулю, в стройную теорию, которая впервые была изложена в этой же книге. Кроме этого, он исследовал сравнения первой и второй степени, теорию квадратичных вычетов и связанный с ней квадратичный закон взаимности[5].
Определения
Если два целых числа и при делении на дают одинаковые остатки, то они называются сравнимыми (или равноостаточными) по модулю числа [6].
Сравнимость чисел и записывается в виде формулы (сравнения):
Число называется модулем сравнения.
Определение сравнимости чисел и по модулю равносильно любому из следующих утверждений:
разность чисел и делится на без остатка;
число может быть представлено в виде , где — некоторое целое число[7].
Сравнения по одному и тому же модулю обладают многими свойствами обычных равенств. Например, их можно складывать, вычитать и перемножать: если числа и попарно сравнимы по модулю , то их суммы и , а также произведения и тоже сравнимы по модулю :
При этом нельзя выполнять эти операции со сравнениями, если их модули не совпадают[9].
К обеим частям сравнения можно прибавить одно и то же число :
Также можно перенести число из одной части сравнения в другую со сменой знака:
Если числа и сравнимы по модулю , то их степени и тоже сравнимы по модулю при любом натуральном [7]:
K любой из частей сравнения можно прибавить целое число, кратное модулю, то есть, если числа и сравнимы по модулю некоторого числа , то и сравнимо с по модулю , где и — произвольные целые числа, кратные :
Также обе части сравнения и модуль можно умножить на одно и то же число, то есть, если числа и сравнимы по модулю некоторого целого числа , то и числа и сравнимы по модулю числа , где — целое:
Сравнения, однако, нельзя, вообще говоря, делить друг на друга или на другие числа. Пример: , однако, сократив в 2 раза, мы получаем ошибочное сравнение: . Правила сокращения для сравнений следующие.
Можно делить обе части сравнения на число, но только взаимно простое с модулем: если
Применение сравнений позволяет легко получать разнообразные признаки делимости. Например, выведем признак делимости натурального числа N на 7. Запишем в виде (то есть отделим цифру единиц). Условие, что делится нацело на 7, можно записать в виде: Умножим это сравнение на
Или, прибавив слева число кратное модулю:
Отсюда вытекает следующий признак делимости на 7: надо вычесть из числа десятков удвоенное число единиц, затем повторять эту операцию до тех пор, пока не получится двузначное или однозначное число; если оно делится на 7, то и исходное число делится. Например, пусть Алгоритм проверки[10]:
Вывод: 22624 делится на 7.
Связанные определения
Классы вычетов
Множество всех чисел, сравнимых с по модулю , называется классом вычетов по модулю , и обычно обозначается или . Таким образом, сравнение равносильно равенству классов вычетов [11].
Любое число класса вычетов называется вычетом по модулю . Пусть для определённости ― остаток от деления любого из представителей выбранного класса на , тогда любое число из этого класса вычетов можно представить в виде , где — целое. Вычет, равный остатку ( при ) называется наименьшим неотрицательным вычетом, а вычет (), самый малый по абсолютной величине, называется абсолютно наименьшим вычетом. При получаем, что , в противном случае . Если — чётное и , то [12].
Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы.
Полная система вычетов по модулю ― любой набор из попарно несравнимых по модулю целых чисел.
Обычно в качестве полной системы вычетов по модулю берётся одно из двух множеств:
наименьшие неотрицательные вычеты, то есть числа:
или абсолютно наименьшие вычеты, состоящие в случае нечётного из чисел
Например, для числа полная система вычетов может быть представлена числами 0, 1, 2, 3, …, 21, 22, 23, …, 39, 40, 41, а приведённая — 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.
Сравнения в кольце многочленов над полем
Рассматривается кольцо многочленов над полем. Два многочлена и
, принадлежащие выбранному кольцу, называются сравнимыми по модулю многочлена, если их разность делится на без остатка. Сравнение обозначается следующим образом:
Так же, как и в кольце целых чисел, такие сравнения можно складывать, вычитать и перемножать[15].
Решение сравнений
Сравнения первой степени
В теории чисел, криптографии и других областях науки часто возникает задача поиска решений сравнения первой степени вида
Решение такого сравнения начинается с вычисления НОД. При этом возможны два случая:
если не кратно , то у сравнения нет решений;
если кратно , то у сравнения существует единственное решение по модулю , или, что то же самое, решений по модулю . В этом случае в результате сокращения исходного сравнения на получается сравнение:
где и являются целыми числами, причём и взаимно просты. Поэтому число можно обратить по модулю , то есть найти такое число , что (другими словами, ). Теперь решение находится умножением полученного сравнения на :
имеем , поэтому по модулю 22 сравнение имеет два решения. Заменим 26 на 4, сравнимое с ним по модулю 22, и затем сократим все три числа на 2:
Поскольку 3 взаимно просто с модулем 11, то его можно обратить по модулю 11 и найти
.
Умножая сравнение на 4, получаем решение по модулю 11:
,
эквивалентное совокупности двух решений по модулю 22:
и .
Пример 2. Дано сравнение:
Отметим, что модуль — простое число.
Первый способ решения — воспользоваться соотношением Безу. С помощью алгоритма Евклида или программы, приведенной в статье о соотношении Безу, находим, что это соотношение для чисел и имеет вид:
или
Умножив обе части этого сравнения на 41, получим:
Отсюда следует, что есть решение исходного сравнения. Удобнее заменить его на сравнимое с ним (остаток от деления на ). Ответ:
Второй способ решения, более простой и быстрый, не требует построения соотношения Безу, но также эквивалентен алгоритму Евклида.
Шаг 1. Делим модуль на коэффициент при x с остатком: . Умножим обе части исходного сравнения на частное и прибавим ; получим: , но левая часть кратна , то есть сравнима с нулём, откуда:
Мы получили при коэффициент 37 вместо 100. На каждом следующем шаге уменьшаем аналогично, пока не получим единицу.
Шаг 2. Аналогично делим на новый коэффициент при x: . Умножим обе части сравнения, полученного в предыдущем шаге, на частное и прибавим ; снова заменив левую часть на ноль, получим:
заменяем на его остаток при делении на равный :
Далее можно было бы сделать аналогично ещё 5 шагов, но проще разделить обе части сравнения на 10 и сразу получить результат:
Сравнения второй степени
Сравнения второй степени по простому модулю m имеет следующий общий вид:
всегда разрешима, и её решение единственно по модулю .
Другими словами, китайская теорема об остатках утверждает, что кольцо вычетов по модулю произведения нескольких попарно взаимно простых чисел является прямым произведением соответствующих множителям колец вычетов.
Например, сравнения часто применяются для вычисления контрольных сумм, используемых в идентификаторах. Так, для определения ошибок при вводе международного номера банковского счета используется сравнение по модулю 97[18].
В химии последняя цифра в регистрационном номере CAS является значением контрольной суммы, которая вычисляется путём сложения последней цифры номера, умноженной на 1, второй справа цифры, умноженной на 2, третьей, умноженной на три и так далее до первой слева цифры, завершаясь вычислением остатка от деления на 10[20]
↑Вилейтнер Г.Глава III. Теория чисел // История математики от Декарта до середины XIX / пер. с нем. под. ред. А. П. Юшкевича. — М.: Государственное издательство физико-математической литературы, 1960. — С. 69—84. — 467 с. Архивировано 24 сентября 2015 года.
↑ 12Степанов С. А.Глава 1. Основные понятия // Сравнения. — М.: «Знание», 1975. — С. 3—9. — 64 с. Архивировано 24 августа 2015 года.
↑Бухштаб А. А.Глава 21. Сравнения 2-й степени по простому модулю, Глава 22. Сравнения второй степени по составному модулю // Теория чисел. — М.: «Просвещение», 1966. — С. 172—201. — 384 с. Архивировано 20 ноября 2015 года.
↑Harald Niederreiter, Arne Winterhof. Applied Number Theory. — «Springer», 2015. — С. 369. — 442 с. — ISBN 978-3-319-22321-6.
↑Коблиц Н. Курс теории чисел и криптографии / пер. с англ. М. А. Михайловой и В. Е. Тараканова под ред. А. М. Зубкова. — М.: Научное изд-во ТВП, 2001. — С. 96, 105—109, 200—209. — 262 с. — ISBN 5-85484-012-X.
Коблиц Н. Курс теории чисел и криптографии / пер. с англ. М. А. Михайловой и В. Е. Тараканова,под ред. А. М. Зубкова. — М.: Научное изд-во ТВП, 2001. — 254 с. — ISBN 5-85484-012-X.
French scientist (1900–1958) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Frédéric Joliot-Curie – news · newspapers · books · scholar · JSTOR (March 2020) (Learn how and when to remove this template message) Frédéric Joliot-CurieBornJean Frédéric Joliot(1900-03-19)19 March 1900Paris, FranceDied14 ...
Coordenadas: 44° 34' N 0° 25' O Landiras Comuna francesa Símbolos Brasão de armas Localização LandirasLocalização de Landiras na França Coordenadas 44° 34' N 0° 25' O País França Região Nova Aquitânia Departamento Gironda Características geográficas Área total 59,08 km² População total (2018) [1] 2 234 hab. Densidade 37,8 hab./km² Código Postal 33720 Código INSEE 33225 Landiras é uma comuna francesa na...
Опис файлу Опис Анкудинова Розита Андріанівна Джерело Енциклопедія «Удмуртія» Час створення невідомо Автор зображення невідомо Ліцензія див. нижче Обґрунтування добропорядного використання для статті «Анкудинова Розита Андріанівна» [?] Мета використання викор
Увага! Цей файл, завантажений під невільною ліцензією, не відповідає критеріям добропорядного використання, або його відповідність не описана належним чином. Для опису відповідності файлу критеріям добропорядного використання використовуйте, будь ласка, шаблон {{Об�...
Sophie Dorothee von Württemberg, Kaiserin Maria Fjodorowna von Russland Sophie Dorothee Auguste Luise Prinzessin von Württemberg, ab 7. Oktober 1776 Großfürstin, ab 1796 Kaiserin Maria Fjodorowna von Russland (* 25. Oktober 1759 in Stettin; † 24. Oktoberjul. / 5. November 1828greg. in Pawlowsk), war ab 1776 zweite Ehefrau des russischen Kaisers Paul I. (regierte 1796–1801). Zwei ihrer Kinder, Alexander I. und Nikolaus I., wurden ebenfalls Kaiser. Inhaltsverzei...
Andrea AgnelliAndrea Agnelli sedang menyaksikan pertandingan Juventus di stadionPekerjaanPengusahaTahun aktif2001–kiniTempat kerjaFIATDikenal atasPresiden Juventus FCSuami/istriEmma WinterOrang tuaUmberto Agnelli (ayah)Allegra Caracciolo (ibu)KerabatJohn Elkann (sepupu) Andrea Agnelli (lahir 6 Desember 1975) adalah seorang pebisnis dari Italia, ia saat ini menjabat sebagai presiden dari klub sepak bola Italia Juventus.[1] Ia juga menjabat sebagai anggota dewan kehormatan bagi F...
Lac de MontcineyreLac de MontcineyreLocationCompains, Puy-de-DômeCoordinates45°28′N 2°54′E / 45.467°N 2.900°E / 45.467; 2.900Basin countriesFranceSurface area0.4 km2 (0.15 sq mi)Max. depth18 m (59 ft)Surface elevation1,182 m (3,878 ft) Lac de Montcineyre is a lake in Compains, Puy-de-Dôme, France. At an elevation of 1182 m, its surface area is 0.4 km². External links Media related to Lac de Montcineyre at Wikimedi...
Rapid transit station in San Francisco Bay Area HaywardHayward station and adjacent freight tracks in March 2018General informationLocation699 B StreetHayward, CaliforniaCoordinates37°40′11″N 122°05′13″W / 37.6697°N 122.0870°W / 37.6697; -122.0870Owned bySan Francisco Bay Area Rapid Transit DistrictLine(s)BART A-LinePlatforms2 side platformsTracks2Connections AC Transit: M, 10, 28, 34, 41, 56, 60, 83, 86, 93, 94, 95, 99, 801 CSU East Bay shuttle Greyhound L...
Canadian novelist Nelly ArcanBornIsabelle FortierMarch 5, 1973Lac-Mégantic, QuebecDiedSeptember 24, 2009 (aged 36)Montreal, QuebecOccupationWriterNationalityCanadian Nelly Arcan (March 5, 1973 – September 24, 2009) was a Canadian novelist. Arcan was born Isabelle Fortier at Lac-Mégantic[1] in the Eastern Townships of Quebec. Biography Arcan's first novel Putain (2001; English: Whore (2004)) received immediate critical and media attention.[2] It was a finalist for both the ...
Fictional title character of Samurai Jack Fictional character JackThe SamuraiSamurai Jack characterFirst appearanceThe Premiere Movie (2001)Last appearanceCI (2017)Created byGenndy TartakovskyVoiced byPhil LaMarrJonathan Osser (young)Keith Ferguson (Cartoon Network: Punch Time Explosion)Hugh Davidson (Mad)In-universe informationFull nameJack[a 1]AliasesThe SamuraiSamurai JackSpeciesHumanGenderMaleTitlePrinceOccupationSamurai/rōninAffiliationThe ScotsmanShaolin MonksSpartansFighting s...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shotton, Flintshire – news · newspapers · books · scholar · JSTOR (January 2009) (Learn how and when to remove this template message) Human settlement in WalesShottonA view from the railway bridge, showing Chester RoadShottonLocation within FlintshirePopulation...
Indian film director, screenwriter and producer This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Maruthi – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remov...
2019 studio album by Dermot KennedyWithout FearStudio album by Dermot KennedyReleased4 October 2019GenreFolk-pop[1]Length50:31LabelRigginsInterscopeIslandProducerScott HarrisCharlie HugallKozSir NolanJonah ShaiStarsmithCarey WillettsDermot Kennedy chronology Dermot Kennedy(2019) Without Fear(2019) Sonder(2022) Singles from Without Fear Moments PassedReleased: 19 September 2017 Power Over MeReleased: 16 October 2018 LostReleased: 6 February 2019 OutnumberedReleased: 14 June 201...
Historic site in Cheshire, EnglandFulshaw HallFulshaw in c.1913LocationWilmslow, Cheshire, EnglandCoordinates53°19'02.8N 2°14'09.2WBuilt1684Built forSamuel Finney I Fulshaw Hall is a country house, south of the civil parish of Wilmslow, in Cheshire, England. It is recorded in the National Heritage List for England as a designated Grade II listed building.[1] Samuel Finney III, the miniature-painter to Queen Charlotte, lived at Fulshaw from 1769 until his death in 1798.[2 ...
Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...