Соединение в свободном состоянии очень неустойчиво, обычно используется в виде относительно стабильного пентагидрата NaOCl · 5H2O или водного раствора, имеющего характерный резкий запах.
По мнению издания The 100 Most Important Chemical Compounds (Greenwood Press, 2007)[2], гипохлорит натрия входит в сотню самых важных химических соединений.
Небольшое Парижское предприятие Societé Javel, открытое в 1778 году на берегах Сены и возглавляемое Леонардом Альбаном (англ.Leonard Alban), адаптировало открытие Бертолле к промышленным условиям и начало выпуск белильной жидкости, растворяя газообразный хлор в воде. Однако получаемый продукт был очень нестабильным, поэтому в 1787 году процесс был модифицирован. Хлор стали пропускать через водный раствор поташа (карбоната калия) (см. уравнение (2)), в результате чего образовывался стабильный продукт, обладающий высокими отбеливающими свойствами. Альбан назвал его «Eau de Javel» («жавелевая вода»). Новый продукт стал моментально популярен во Франции и Англии из-за лёгкости его перевозки и хранения[7].
В 1820 году французский фармацевт Антуан Лабаррак (фр.Antoine Germain Labarraque) заменил поташ на более дешёвую каустическую соду (гидроксид натрия) (см. уравнение (3)). Получившийся раствор гипохлорита натрия получил название «Лабарракова вода» (фр.Eau de Labarraque). Он стал широко использоваться для отбеливания и дезинфекции[7]. Реакция протекает в холодном разбавленном растворе:
Несмотря на то, что дезинфицирующие свойства гипохлорита были обнаружены в первой половине XIX века, использование его для обеззараживания питьевой воды и очистки сточных вод началось только в конце века. Первые системы водоочистки были открыты в 1893 году в Гамбурге[2]; в США первый завод по производству очищенной питьевой воды появился в 1908 году в Джерси-Сити[8].
Физические свойства
Безводный гипохлорит натрия представляет собой неустойчивое бесцветное кристаллическое вещество. Элементный состав: Na (30,9 %), Cl (47,6 %), O (21,5 %).
Хорошо растворим в воде: 53,4 г в 100 граммах воды (130 г на 100 г воды при 50 °C)[9].
моногидрат NaOCl · H2O — крайне неустойчив, разлагается выше 60 °C, при более высоких температурах — со взрывом[3].
NaOCl · 2,5H2O — более устойчив, плавится при 57,5 °C[3].
пентагидрат NaOCl · 5H2O — наиболее устойчивая форма, представляет собой бледно-зеленовато-жёлтые (технического качества — белые[10]) ромбические кристаллы (a = 0,808 нм, b = 1,606 нм, c = 0,533 нм, Z = 4). Не гигроскопичен, хорошо растворим в воде (в г/100 граммов воды, в пересчёте на безводную соль): 26 (−10 °C), 29,5 (0 °C), 38 (10 °C), 82 (25 °C), 100 (30 °C). В воздухе расплывается, переходя в жидкое состояние, из-за быстрого разложения[3]. Температура плавления: 24,4 °C (по другим данным: 18 °C[10]), при нагревании (30—50 °C) разлагается[1].
Плотность водного раствора гипохлорита натрия при 18 °C[11]:
Гипохлорит натрия — неустойчивое соединение, легко разлагающееся с выделением кислорода:
Самопроизвольное разложение медленно происходит даже при комнатной температуре: за 40 суток пентагидрат (NaOCl · 5H2O) теряет 30 % активного хлора[К 5][13]. При температуре 70 °C разложение безводного гипохлорита протекает со взрывом[14].
Водные растворы гипохлорита натрия неустойчивы и со временем разлагаются даже при обычной температуре (0,085 % в сутки[3]). Распад ускоряет освещение, ионы тяжёлых металлов и хлоридыщелочных металлов; напротив, сульфат магния, ортоборная кислота, силикат и гидроксид натрия замедляют процесс; при этом наиболее устойчивы растворы с сильнощелочной средой (pH > 11)[3].
В сильнощелочной среде (pH > 10), когда гидролиз гипохлорит-иона подавлен, разложение происходит следующим образом[15]:
При температурах выше 35 °C распад сопровождается реакцией диспропорционирования (дисмутации)[15]:
При диапазоне pH от 5 до 10, когда концентрация хлорноватистой кислоты в растворе становится заметной, разложение идёт по следующей схеме[15]:
В кислой среде разложение HOCl ускоряется, а в очень кислой среде (pH < 3) при комнатной температуре наблюдается распад по следующей схеме[13]:
Если для подкисления используется соляная кислота, в результате выделяется хлор:
Пропуская через насыщенный водный раствор гипохлорита натрия углекислый газ, можно получить раствор хлорноватистой кислоты:
Окислительные свойства
Водный раствор гипохлорита натрия — сильный окислитель, вступающий в многочисленные реакции с разнообразными восстановителями, независимо от кислотно-щелочного характера среды[16].
Среди качественных аналитических реакций на гипохлорит-ион можно отметить выпадение коричневого осадка метагидроксида при добавлении при комнатной температуре испытуемого образца к щелочному раствору соли одновалентного таллия (предел обнаружения 0,5 мкг гипохлорита):
Другой вариант — иодкрахмальная реакция в сильнокислой среде и цветная реакция с 4,4’-тетраметилдиаминодифенилметаном или n, n’-диокситрифенилметаном в присутствии бромата калия[21].
Распространённым методом количественного анализа гипохлорита натрия в растворе является потенциометрический анализ методом добавок анализируемого раствора к стандартному раствору (МДА)[К 8] или метод уменьшения концентрации анализируемого раствора при его добавлении к стандартному раствору (МУА)[К 9] с использованием бром-ионоселективного электрода (Br-ИСЭ)[22].
Физиологическое действие и воздействие на окружающую среду
NaOCl одно из лучших известных средств, проявляющих благодаря гипохлорит-иону сильную антибактериальную активность. Он убивает микроорганизмы очень быстро и уже в очень низких концентрациях. В водном растворе имеет характерный горько-солоновато-кислый вяжущий вкус.
Наивысшая бактерицидная способность гипохлорита проявляется в нейтральной среде, когда концентрации HClO и
гипохлорит-анионов ClO− приблизительно равны (см. подраздел «Гидролиз и разложение в водных растворах»). Разложение гипохлорита сопровождается образованием ряда активных частиц и, в частности, синглетного кислорода, обладающего высоким биоцидным действием[25]. Образующиеся частицы принимают участие в уничтожении микроорганизмов, взаимодействуя со способными к окислению биополимерами в их структуре. Исследованиями установлено, этот процесс аналогичен тому, что происходит естественным образом во всех высших организмах. Некоторые клетки человека (нейтрофилы, гепатоциты и др.) синтезируют хлорноватистую кислоту и сопутствующие высокоактивные радикалы для борьбы с микроорганизмами и чужеродными субстанциями[26].
Несмотря на высокую биоцидную активность гипохлорита натрия, следует иметь в виду, что некоторые потенциально опасные простейшие организмы, например, возбудители лямблиоза или криптоспоридиоза[28], устойчивы к его действию.
Высокие окислительные свойства гипохлорита натрия позволяют его успешно использовать для обезвреживания различных токсинов. В приведённой ниже таблице представлены результаты инактивации токсинов при 30-минутной экспозиции различных концентраций NaOCl («+» — токсин инактивирован; «−» — токсин остался активен)[29]:
В больших концентрациях на организм человека гипохлорит натрия может оказывать вредное воздействие. Растворы NaOCl могут быть опасны при ингаляционном воздействии из-за возможности выделения токсичного хлора (раздражающий и удушающий эффект). Прямое попадание гипохлорита в глаза, особенно при высоких концентрациях, может вызвать химический ожог и даже привести к частичной или полной потере зрения. Бытовые отбеливатели на основе NaOCl могут вызвать раздражение кожи, а промышленные привести к серьёзным язвам и отмиранию ткани. Приём внутрь разбавленных растворов (3—6 %) гипохлорита натрия приводит обычно только к раздражению пищевода и иногда ацидозу, в то время как концентрированные растворы способны вызвать довольно серьёзные повреждения, вплоть до перфорации желудочно-кишечного тракта[30].
Несмотря на свою высокую химическую активность, безопасность гипохлорита натрия для человека документально подтверждена исследованиями токсикологических центров Северной Америки и Европы, которые показывают, что вещество в рабочих концентрациях не несёт каких-либо серьёзных последствий для здоровья после непреднамеренного проглатывания или попадания на кожу. Также подтверждено, что гипохлорит натрия не является мутагенным, канцерогенным и тератогенным соединением, а также кожным аллергеном. Международное агентство по изучению рака пришло к выводу, что питьевая вода, прошедшая обработку NaOCl, не содержит человеческих канцерогенов[31].
Человек: минимально известная токсическая доза (англ.TDLo) = 45 мг/кг.
При обычном бытовом использовании гипохлорит натрия распадается в окружающей среде на поваренную соль, воду и кислород. Другие вещества могут образоваться в незначительном количестве. По заключению Шведского института экологических исследований, гипохлорит натрия, скорее всего, не создаёт экологических проблем при его использовании в рекомендованном порядке и количествах[31].
Гипохлорит натрия не представляет угрозы с точки зрения пожароопасности.
Основным лабораторным методом получения гипохлорита натрия является пропускание газообразного хлора через охлаждённый насыщенный раствор гидроксида натрия[34]:
Для отделения из реакционной смеси хлорида натрия (NaCl) используют охлаждение до температуры близкой к 0 °C — в этих условиях соль выпадает в осадок. Дальнейшим замораживанием смеси (−40 °C) и последующей кристаллизацией при −5 °C получают пентагидрат гипохлорита натрия NaOCl · 5H2O. Безводную соль можно получить обезвоживанием в вакууме над концентрированной серной кислотой[34].
Потребление гипохлорита натрия в мире постоянно растёт, но оценка мирового объёма производства представляет определённую трудность в связи с тем, что значительная его часть производится электрохимическим способом по принципу «in situ», то есть на месте его непосредственного потребления. Это обусловлено недостаточной для длительного хранения стабильностью растворов гипохлорита натрия, особенно при повышенной температуре (см. ниже). Мировой рынок гипохлорита натрия составил в 2020 году 261,7 млн. долларов США и, по прогнозам, достигнет размера в 385,6 млн. долларов США к 2028 году при среднем росте 5% в год.
По данным на 2017 год, объём гипохлорита натрия для промышленного применения в США и России составляет 1700 тыс. т в год и 87 тыс. т в год соответственно. Бытовое применение в двух странах: 2500 тыс. т/г приходится на США и лишь 32 тыс. т/г потребляет Россия[37].
Обзор промышленных способов получения
Выдающиеся отбеливающие и дезинфекционные свойства гипохлорита натрия привели к интенсивному росту его потребления, что в свою очередь дало стимул для создания крупномасштабных промышленных производств.
В современной промышленности существует два основных метода производства гипохлорита натрия:
электрохимический метод — электролиз водного раствора хлорида натрия[38].
В свою очередь, способ химического хлорирования, предлагает две производственные схемы:
основной процесс, где в качестве конечного продукта образуется разбавленный (около 16 % NaOCl) раствор гипохлорита с примесью хлорида и гидроксида натрия;
низко-солевой или концентрированный процесс — позволяет получить концентрированный (25—40 % NaOCl) с меньшим уровнем загрязнения[39]:[стр. 447—449].
Химический метод
Сущность химического метода получения NaOCl не изменилась с момента его открытия Лабарраком (см. подраздел «История открытия»), и заключается во взаимодействии газообразного хлора с едким натром:
Современный химический гигант Dow Chemical Company был одной из первых компаний, поставивших производство гипохлорита натрия на масштабную промышленную основу. В 1898 году открылся первый завод компании по выпуску NaOCl химическим способом. Другой компанией, благодаря которой, это вещество достигло сегодняшней популярности, стала Clorox — крупнейший производитель бытовых отбеливателей в США. С момента основания в 1913 году, вплоть до 1957 года, когда компанию приобрёл концерн Procter & Gamble, отбеливатель на основе гипохлорита натрия Clorox Bleach® был единственным продуктом в её ассортименте[2].
Современная технологическая схема непрерывного производства гипохлорита натрия представлена на рисунке[39]:[стр. 442]:
Низкосолевой процесс производства, в отличие от основной технологической схемы, представленной выше, включает в себя две стадии хлорирования, причём в кристаллизатор (см. на рисунке), где происходит концентрирование готового продукта, подаётся разбавленный раствор NaOCl из первого реактора[39]:[стр. 450]:
Электрохимический метод получения гипохлорита натрия заключается в электролизе водного раствора хлорида натрия или морской воды в электролизёре с полностью открытыми электродными зонами (бездиафрагменный способ), то есть продукты электролиза свободно смешиваются в электрохимическом процессе[43].
Процесс в электролизёре за счёт химического взаимодействия образующихся продуктов:
Общая схема процесса:
Электрохимический метод используется, в основном, для получения дезинфицирующего раствора для систем водоочистки. Удобство этого метода заключается в том, что производство гипохлорита не требует поставок хлора, его можно производить сразу на месте водоподготовки, избежав, тем самым, расходов на доставку; кроме того, метод позволяет производить гипохлорит в достаточно широком диапазоне объёмов выработки: от очень малых до крупнотоннажных[43].
В мире существуют множество различных производителей электролизёров для получения растворов гипохлорита натрия, среди которых наиболее распространены системы компании Severn Trent De Nora: Seaclor и Sanilec[44].
Система Seaclor® является преобладающей технологией производства гипохлорита натрия из морской воды электрохимическим методом, занимая свыше 70 % всех мировых мощностей. Более 400 установок Seaclor® работают в 60 странах; их суммарная производительность составляет порядка 450 тыс. тонн NaOCl в год, единичная мощность колеблется в диапазоне 227—22 680 кг/день[45]. Установки позволяют получать концентрацию активного хлора в растворе в диапазоне 0,1—0,25 %[46].
Установки Sanilec® выпускаются производительностью от 1,2 (портативные генераторы) до 21 600 кг/день[47], концентрация активного хлора составляет 0,05—0,25 %[48].
Характеристика продукции, обращение, хранение и транспортировка
В Российской Федерации гипохлорит натрия выпускается в соответствии с ГОСТ 11086-76 «Гипохлорит натрия. Технические условия». В соответствии с этим документом, по назначению NaOCl делится на две марки, характеристики которых представлены ниже[49]:
Наименование показателя
Марка А
Марка Б
Внешний вид
Жидкость зеленовато-жёлтого цвета
Коэффициент светопропускания
Не менее 20 %
Массовая концентрация активного хлора, г/дм³, не менее
190
170
Массовая концентрация щёлочи в пересчёте на NaOH, г/дм³
10—20
40—60
Массовая концентрация железа, г/дм³, не более
0,02
0,06
Область применения
В химической промышленности для обеззараживания воды, дезинфекции и отбелки
В витаминной промышленности (как окислитель) и для отбеливания ткани
Гипохлорит натрия должен храниться в защищённых от света, специальных полиэтиленовых, стальных гуммированных или других, покрытых коррозионно-стойкими материалами ёмкостях, наполненных на 90 % объёма и оборудованных воздушником для сброса образующегося при распаде кислорода. Перевозка продукции осуществляется в соответствии с правилами транспортировки опасных грузов[49].
Растворы товарного гипохлорита натрия со временем теряют свою активность из-за разложения NaOCl. Следующая таблица наглядно показывает, что с течением времени концентрация активного вещества в растворах уменьшается. Тем не менее, как видно из полученной диаграммы, с уменьшением концентрации гипохлорита скорость его распада также уменьшается и промышленные растворы стабилизируются[12]:[стр. 469]:
Концентрация NaOCl, %
Период полуразложения, дней
25 °C
35 °C
15
144
39
12
180
48
9
240
65
6
360
97
3
720
194
1
2160
580
Наиболее стабильны для хранения водные растворы гипохлорита, имеющие pH в диапазоне 11,86−13[12]:[стр. 470].
Применение
Обзор направлений использования
Гипохлорит натрия является безусловным лидером среди гипохлоритов других металлов, имеющих промышленную значимость, занимая 91 % мирового рынка. Почти 9 % остаётся за гипохлоритом кальция, гипохлориты калия и лития имеют незначительные объёмы использования[50].
Весь широкий спектр использования гипохлорита натрия можно разбить на три условные группы:
использование для бытовых целей;
использование для промышленных целей;
использование в медицине.
Бытовое использование включает в себя:
использование в качестве средства для дезинфекции и антибактериальной обработки;
промышленное отбеливание ткани, древесной массы и некоторых других продуктов;
промышленная дезинфекция и санитарно-гигиеническая обработка;
очистка и дезинфекция питьевой воды для систем коммунального водоснабжения;
очистка и обеззараживание промышленных стоков;
химическое производство.
По оценке экспертов IHSАрхивная копия от 17 декабря 2014 на Wayback Machine, около 67 % всего гипохлорита натрия используется в качестве отбеливателя и 33 % для нужд дезинфекции и очистки, причём последнее направление имеет тенденцию к росту. Наиболее распространённое направление промышленного использования гипохлорита (60 %) — дезинфекция промышленных и бытовых сточных вод. Общий глобальный рост объёмов промышленного потребления NaOCl в 2012—2017 гг оценивается в 2,5 % ежегодно. Рост мирового спроса на гипохлорит натрия для бытового использования в 2012—2017 гг оценивается примерно в 2 % ежегодно[50].
Применение в бытовой химии
Гипохлорит натрия находит широкое применение в бытовой химии и входит в качестве активного ингредиента в состав многочисленных средств, предназначенных для отбеливания, очистки и дезинфекции различных поверхностей и материалов. В США примерно 80 % всего гипохлорита, используемого домохозяйствами, приходится на бытовое отбеливание[51]. Обычно в быту применяются растворы с концентрацией в диапазоне от 3 до 6 % гипохлорита[52].
Коммерческая доступность и высокая эффективность действующего вещества определяет его широкое использование различными производственными компаниями, где гипохлорит натрия или средства на его основе выпускаются под различными торговыми марками, некоторые из которых представлены в таблице:
Низкая стоимость и доступность гипохлорита натрия делает его важным компонентом для поддержания высоких гигиенических стандартов во всём мире. Это особенно ярко проявляется в развивающихся странах, где использование NaOCl стало решающим фактором для остановки холеры, дизентерии, брюшного тифа и других водных биотических заболеваний. Так, при вспышке холеры в странах Латинской Америки и Карибского бассейна в конце XX века благодаря гипохлориту натрия удалось свести к минимуму заболеваемость и смертность, что было сообщено на симпозиуме по тропическим болезням, проводимого под эгидой Института Пастера[31].
Для медицинских целей в России гипохлорит натрия используется в качестве 0,06%-го раствора для внутриполостного и наружного применения, а также раствора для инъекций. В хирургической практике он применяется для обработки, промывания или дренирования операционных ран и интраоперационной санации плевральной полости при гнойных поражениях; в акушерстве и гинекологии — для периоперационной обработки влагалища, лечения бартолинита, кольпита, трихомониаза, хламидиоза, эндометрита, аднексита и т. п.; в оториноларингологии — для полосканий носа и горла, закапывания в слуховой проход; в дерматологии — для влажных повязок, примочек, компрессов при различных видах инфекций[61].
В стоматологической практике гипохлорит натрия наиболее широко применяется в качестве антисептического ирригационного раствора (концентрация NaOCl 0,5—5,25 %) в эндодонтии[К 14][62]. Популярность NaOCl определяется общедоступностью и дешевизной раствора, а также бактерицидным и противовирусным эффектом в отношении таких опасных вирусов как ВИЧ, ротавирус, вирус герпеса, вирусы гепатита A и B[59]. Имеются данные об использовании гипохлорита натрия для лечения вирусных гепатитов: он обладает широким спектром противовирусных, детоксикационных и антиоксидантных эффектов[63]. Растворы NaOCl можно использовать в целях стерилизации некоторых медицинских изделий, предметов ухода
за больными, посуды, белья, игрушек, помещений, твёрдой мебели, сантехнического оборудования. Из-за высокой коррозионной активности гипохлорит не применяют для металлических приборов и инструментов. Отметим также применение растворов гипохлорита натрия в ветеринарии: они используются для дезинфекции животноводческих помещений[64].
Промышленное применение
Применение в качестве промышленного отбеливателя
Использования гипохлорита натрия в качестве отбеливателя является одним из приоритетных направлений промышленного использования наряду с дезинфекцией и очисткой питьевой воды. Мировой рынок только в этом сегменте превышает 4 млн тонн[К 15][31].
Обычно для промышленных нужд в качестве отбеливателя используются водные растворы NaOCl, содержащие 10—12 % действующего вещества[31].
Гипохлорит натрия широко используется в качестве отбеливателя и пятновыводителя в текстильном производстве и промышленных прачечных и химчистках. Он может быть безопасно использован для многих видов тканей, включая хлопок, полиэстер, нейлон, ацетат, лён, вискозу и другие. Он очень эффективен для удаления следов почвы и широкого спектра пятен, в том числе крови, кофе, травы, горчицы, красного вина и т. д.[31]
Гипохлорит натрия также используется в целлюлозно-бумажной промышленности для отбелки древесной массы[65]. Отбелка с использованием NaOCl обычно следует за этапом хлорирования и является одной из ступеней химической переработки древесины, используемой для достижения высокой степени белизны целлюлозы. Обработку волокнистых полуфабрикатов проводят в специальных башнях гипохлоритной отбелки в щелочной среде (pH 8—9), температуре 35—40 °C, в течение 2—3 часов. В течение этого процесса происходит окисление и хлорирование лигнина, а также разрушение хромофорных групп органических молекул[66].
Применение в качестве промышленного дезинфицирующего средства
Широкое применение гипохлорита натрия в качестве промышленного дезинфицирующего средства связано, прежде всего, со следующими направлениями[52]:
дезинфекция питьевой воды перед подачей в распределительные системы городского водоснабжения;
дезинфекция и альгицидная обработка воды плавательных бассейнов и прудов;
обработка бытовых и промышленных сточных вод, очистка от органических и неорганических примесей;
в пивоварении, виноделии, молочной промышленности — дезинфекция систем, трубопроводов, резервуаров;
фунгицидная и бактерицидная обработка зерна;
дезинфекция воды рыбохозяйственных водоёмов;
дезинфекция технических помещений.
Гипохлорит как дезинфектант входит в состав некоторых средств для поточной автоматизированной мойки посуды и некоторых других жидких синтетических моющих средств[67].
Промышленные дезинфицирующие и отбеливающие растворы выпускаются многими производителями под различными торговыми марками, некоторые из которых представлены в таблице:
Окислительная дезинфекция с помощью хлора и его производных — едва ли не самый распространённый практический метод обеззараживания воды, начало массового использование которого многими странами Западной Европы, США и Россией датируется первой четвертью XX века[78]:[стр. 17].
Использование гипохлорита натрия в качестве дезинфицирующего агента взамен хлора является перспективным и обладает рядом существенных преимуществ:
реагент может быть синтезирован электрохимическим методом непосредственно на месте использования из легкодоступной поваренной соли;
необходимые показатели качества питьевой воды и воды для гидротехнических сооружений могут быть достигнуты за счёт меньшего количества активного хлора;
концентрация канцерогенных хлорорганических примесей в воде после обработки существенно меньше;
замена хлора на гипохлорит натрия способствует улучшению экологической обстановки и гигиенической безопасности[78]:[стр. 36].
гипохлорит обладает более широким спектром биоцидного действия на различные типы микроорганизмов при меньшей токсичности;
Для целей очистки бытовой воды используются разбавленные растворы гипохлорита натрия: типовая концентрация активного хлора в них составляет 0,2—2 мг/л против 1—16 мг/л для газообразного хлора[79]. Разбавление промышленных растворов до рабочей концентрации производят непосредственно на месте.
Также с технической точки зрения, принимая во внимание условие использования в РФ, эксперты отмечают:
существенно более высокую степень безопасности технологии производства реагента;
относительную безопасность хранения и транспортировки до места использования;
лояльные требования к технике безопасности при работе с веществом и его растворами на объектах;
неподведомственность технологии обеззараживания воды гипохлоритом Ростехнадзору РФ[80].
Использование гипохлорита натрия для дезинфекции воды в России становится все более популярным и активно внедряется в практику ведущими промышленными центрами страны. Так, в конце 2009 года, в Люберцах началось строительство завода по производству NaOCl мощностью 50 тыс. тонн/год для нужд Московского городского хозяйства. Правительством Москвы было принято решение о переводе систем обеззараживания воды московских станции водоподготовки с жидкого хлора на гипохлорит натрия (с 2012 г.). Завод по производству гипохлорита натрия, переданный Правительством Москвы Акционерному обществу "Мосводоканал", был запущен в эксплуатацию в марте 2015 года: он стал выпускать реагент, необходимый для обеззараживания воды на станциях водоподготовки города Москвы, полностью покрывая их потребности.
Гипохлорит натрия используется в так называемом процесса Рашига (англ.Raschig Process, окисление аммиака гипохлоритом) — основном промышленном способе получения гидразина, открытого немецким химиком Фридрихом Рашигом в 1907 году. Химия процесса выглядит следующим образом: на первой стадии аммиак окисляется до хлорамина, который затем, реагирует с аммиаком, образуя собственно гидразин[90]:
Общая схема:
В качестве побочной реакции наблюдается взаимодействие гидразина с хлорамином[90]:
Процесс Рашига протекает в щелочной среде (pH 8—10) при избытке аммиака, повышенном давлении (2,5—3,0 МПа) и температуре 120—160 °C[91]. Выход гидразина (по гипохлориту) в итоге может достигать 80 %[92].
Даже незначительные количества катионов некоторых тяжёлых металлов, особенно двухвалентной меди, могут существенно увеличить долю побочной реакции, в связи с чем, в реакционную смесь добавляют небольшое количество желатина или специального клея для связывания ионов в нереакционный комплекс[92].
Модификацией процесса Рашига стал процесс Хофмана (англ.Hoffmann Process или англ.Urea Process), где вместо аммиака используется мочевина[93]:
В процессе используется 43%-й раствор мочевины с добавками специального реагента (приблизительно 0,5 г/л) для ингибирования побочной реакции и увеличения выхода конечного продукта. Раствор гипохлорита натрия используется в соотношении к раствору мочевины, как 4:1; температура в реакторе не превышает 100 °C[93].
Применение в промышленном органическом синтезе
Сильные окислительные свойства гипохлорита натрия используются в промышленном органическом синтезе для получения различных соединений, среди которых:
метансульфоновая кислота — промежуточный продукт в синтезе лекарственных препаратов и электролитов для получения покрытий драгоценными металлами[95]:[стр. 92]:
крахмал окисленный (E1404) — пищевая добавка, используемая в качестве загустителя, носителя и улучшителя для хлебопекарных изделий[98].
Применение в лабораторном органическом синтезе
Гипохлорит натрия находит широкое применение в лабораторной органической практике прежде всего, из-за своих сильных окислительных свойств и доступности как реактива.
Окислительные возможности NaOCl используются в следующих превращениях:
реагент для синтеза органических гипохлоритов[111].
Прочие направления использования
Среди прочих направлений использования гипохлорита натрия отметим:
в промышленном органическом синтезе или гидрометаллургическом производстве для дегазации токсичных жидких и газообразных отходов, содержащих циановодород или цианиды[112];
↑ 12Строго говоря, и «лабарракова вода» и «жавелевая вода» обозначают водные растворы смеси солей (хлорида и гипохлорита), соответственно, натрия и калия, что объясняется технологией производства: их получали, пропуская газообразный хлор через водный раствор гидроксида или карбоната щелочного металла. Вместе с тем, хотя исторически название «жавелевая вода» относилась к гипохлориту калия, на практике (в том числе и в литературе) под этим названием нередко фигурирует и гипохлорит натрия.
↑Для безводного гипохлорита натрия фазовый переход не удаётся обнаружить из-за разложения соединения.
↑Несмотря на то, что в настоящей статье используется формула гипохлорита натрия NaOCl (натрий не связан с хлором напрямую), в научной литературе фигурирует как формула NaOCl, так и NaClO, причём последний вариант встречается довольно часто. В настоящей статье использован вариант NaOCl, что связано с подобным написанием формулы в специальной литературе последних лет:
White’s Handbook of Chlorination and Alternative Disinfectants / Black & Veatch Corporation. — 5-th edition. — Hoboken: John Wiley & Sons, 2010. — P. 454. — ISBN 978-0-470-18098-3.
Неорганическая химия / Под редакцией Ю. Д. Третьякова. — Академия, 2004. — Т. 2: Химия непереходных элементов. — С. 307—308. — ISBN 5-7695-1436-1.
↑ 12Под «активным хлором» понимается количество хлора, выделяющегося при взаимодействии с HCl. В чистом хлоре содержится 100 % «активного хлора». Содержание «активного хлора» в процентах рассчитывается как отношение массы одного моля хлора (70,9 г) к массе искомого вещества, способного при реакции с HCl выделить один моль хлора (74,5 г для NaOCl).
↑До открытия отбеливающих свойств хлора и его производных отбелка ткани представляла собой весьма трудоёмкий и длительный процесс, часто длившийся до восьми недель. Полотно вымачивали в кислом молоке или пахте, а также долго выдерживали под солнцем. Только в 1756 году была совершена первая попытка применить химическое отбеливание для отбеливания ткани: шведский химик Френсис Хоум предложил использовать слабый раствор серной кислоты, сократив время процедуры до 12 часов.
↑Приведены значения стандартных электродных потенциалов в водных растворах при температуре 25 °C и давлении 1 атм. Величины потенциалов выражены в вольтах по отношению к стандартному потенциалу водородного электрода, принятому при всех температурах за нуль.
↑МДА — метод основан на прибавлении точно измеренного объёма пробы к стандартному раствору определяемого иона, специфически определяемого ионоселективным электродом.
↑МУА — метод основан на прибавлении точно измеренной пробы к раствору, содержащему ион, который стехиометрически взаимодействует с определяемым ионом и специфически определяется ионоселективным электродом.
Цифры от 0 до 4 обозначают класс опасности, 4 — самый высокий уровень.
↑ 12Гипохлорит натрия входит в состав средства, согласно данным на упаковке.
↑Эндодонтия — раздел стоматологии, занимающийся изучением и лечением системы корневых каналов зуба.
↑По данным на 90-е годы XX века в расчёте на брутто-вес (водный раствор гипохлорита).
↑Реакция идёт в присутствии катализатора Na2Fe(CO)4.
Примечания
↑ 12Лидин Р. А., Андреева Л. Л., Молочко В. А.Глава 3. Физические свойства // Константы неорганических веществ: справочник / Под редакцией проф. Р. А. Лидина. — 2-е изд., перераб. и доп. — М.: Дрофа, 2006. — С. 137. — ISBN 5-7107-8085-5.
↑ 123456Myers R. L. The 100 Most Important Chemical Compounds: A Reference Guide. — Westport: Greenwood Press, 2007. — P. 260. — ISBN 978-0-313-33758-1.
↑ 1234567Натрия гипохлорит // Химическая энциклопедия / Главный редактор И. Л. Кнунянц. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 355. — ISBN 5-85270-039-8.
↑ 12Лидин Р. А., Андреева Л. Л., Молочко В. А.Часть VI. Растворимость веществ в воде // Константы неорганических веществ: справочник / Под редакцией проф. Р. А. Лидина. — 2-е изд., перераб. и доп. — М.: Дрофа, 2006. — С. 618. — ISBN 5-7107-8085-5.
↑Хлор, Chlorum, Cl (17) (неопр.). Открытие элементов и происхождение их названий. Химическая информационная сеть ChemNet. Дата обращения: 27 января 2010. Архивировано 20 августа 2011 года.
↑Baldwin R. T.Uses of chlorine (англ.) // Journal of Chemical Education. — 1927. — Vol. 4, no. 4. — P. 454.
↑Drinking Water and Health / Assembly of Life Sciences, Safe Drinking Water Committee. — Washington: National Press Academy, 1980. — P. 18. — ISBN 978-030902931-5.
↑Таблица неорганических и координационных соединений (неопр.). Новый справочник химика и технолога. Основные свойства неорганических, органических и элементоорганических соединений. ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 20 августа 2011 года.
↑ 12Patnaik P. Handbook of Inorganic Chemicals. — McGraw-Hill, 2003. — P. 870—871. — ISBN 0-07-049439-8.
↑Лидин Р. А., Андреева Л. Л., Молочко В. А.Часть VII. Плотность воды и водных растворов. Глава 3. Соли // Константы неорганических веществ: справочник / Под редакцией проф. Р. А. Лидина. — 2-е изд., перераб. и доп. — М.: Дрофа, 2006. — С. 657. — ISBN 5-7107-8085-5.
↑ 123White’s Handbook of Chlorination and Alternative Disinfectants / Black & Veatch Corporation. — 5-th edition. — Hoboken: John Wiley & Sons, 2010. — P. 452—571. — ISBN 978-0-470-18098-3.
↑ 12345678Гипохлориты // Химическая энциклопедия / Главный редактор И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 1121—1122.
↑Турова Н. Я. Неорганическая химия в таблицах. — М.: Высший химический колледж РАН, 1997. — С. 6.
↑Ахметов Н. С. Общая и неорганическая химия. Учебник для вузов. — 4-е изд., исправленное. — М.: Высшая школа, 2001. — С. 326. — ISBN 5-06-003363-5.
↑Электродные процессы в растворах (неопр.). Новый справочник химика и технолога. Электродные процессы. Химическая кинетика и диффузия. Коллоидная химия. ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 20 августа 2011 года.
↑ 123Неорганическая химия / Под редакцией Ю. Д. Третьякова. — Академия, 2004. — Т. 2: Химия непереходных элементов. — 368 с. — ISBN 5-7695-1436-1.
↑Неорганическая химия / Под редакцией Ю. Д. Третьякова. — Академия, 2004. — Т. 3, Книга 1: Химия переходных элементов. — 352 с. — ISBN 5-7695-2532-0.
↑Неорганическая химия / Под редакцией Ю. Д. Третьякова. — Академия, 2004. — Т. 3, Книга 2: Химия переходных элементов. — 400 с. — ISBN 5-7695-2533-9.
↑Фрумина Н. С., Лисенко Н. Ф., Чернова М. А. Хлор. — Серия: Аналитическая химия элементов. — М.: Наука, 1983. — С. 25.
↑Прямая потенциометрия (неопр.). Новый справочник химика и технолога. Аналитическая химия (часть I). ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 20 августа 2011 года.
↑Иодометрия // Химическая энциклопедия / Главный редактор И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 496—497. — ISBN 5-85270-035-5.
↑Коррозионная стойкость материалов (неопр.). Новый справочник химика и технолога. Электродные процессы. Химическая кинетика и диффузия. Коллоидная химия. ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 20 августа 2011 года.
↑Швецов А. Б., Козырева А. В., Седунов С. Г., Тараскин К. А. Хлорные дезинфектанты и их применение в современной водоподготовке // Молекулярные технологии. — 2009. — № 3. — С. 98—121.
↑Бахир В. М. Оптимальный путь повышения промышленной и экологической безопасности объектов водоподготовки и водоотведения ЖКХ // Питьевая вода. — 2007. — № 6. — С. 4—15.
↑Ingle J. I., Bakland L. K., Baumgartner J. C. Ingle’s Endodontics 6. — 6. — BC Deker, 2008. — P. 998—999. — ISBN 978-1-55099-333-9.
↑Informational Bulletin NFPA 2009-04N(англ.) (PDF). Department of Emergency Services, County of Sonoma (10 января 2009). Дата обращения: 28 января 2010. Архивировано из оригинала 4 августа 2009 года.
↑ 12Губер Ф., Шмайсер М., Шенк П. В., Фехер Ф., Штойдель Р., Клемент Р. Руководство по неорганическому синтезу: в 6 томах / Пер. с немецкого / Под редакцией Г. Брауэра. — М.: Мир, 1985. — Т. 2. — С. 355—356.
↑Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Под ред. проф. Н. В. Лазарева и проф. И. Д. Гадаскиной. — Издание 7-е, пер. и доп. — Л.: Химия, 1977. — Т. 3. — С. 44.
↑Крамаренко В. Ф. Токсикологическая химия. — Киев: Выща школа, 1989. — С. 426. — ISBN 5-11-000148-0.
↑ 123Handbook of Detergents, Part F: Production / Edited by Uri Zoller, co-editor Paul Sosis. — Surfactant Science Series. — CRC Press, 2009. — 593 p. — ISBN 978-0-8247-0349-3.
↑Гипохлорит натрия (неопр.). ЗАО «НПО Реагенты». Дата обращения: 12 февраля 2010. Архивировано из оригинала 20 августа 2011 года.
↑ 12Ratnayaka D. D., Brandt M. J., Johnson M. Twort’s Water Supply. — 6-th edition. — Oxford: Butterworth-Heinemann, 2009. — P. 439—441. — ISBN 978-0-7506-6843-9.
↑Bommaraju T. V., Orosz P. J., Sokol E. A.Electrochemistry Encyclopedia(англ.). YCES — Case Western Reserve University. Дата обращения: 11 февраля 2010. Архивировано 20 августа 2011 года.
↑ 12ГОСТ 11086-76. Гипохлорит натрия. Технические условия. — Издание официальное. — М.: Стандартинформ, 2008. — 7 с.
↑ 12Hypochlorite Bleaches(англ.). Chemical Economics Handbook. IHS (июль 2012). Дата обращения: 13 августа 2014. Архивировано 13 августа 2014 года.
↑Technology Economics: Sodium Hypochlorite Chemical Production. — Intratec Solutions, 2013. — P. 62. — ISBN 978-1-483-95119-5.
↑ 12Weisblatt J.Sodium Hypochlorite // Chemical Compounds / Project editor Charles B. Montney. — Thomson Gale, 2006. — P. 759—763. — ISBN 1-4144-0150-7.
↑ 12Products(англ.). Sunbelt Chemicals Corp. Дата обращения: 27 января 2010. Архивировано 20 августа 2011 года.
↑[drugs-about.com/drugs-l/lysol-brand-disinfectant-bleach-toilet-bowl-cleaner.html Lysol Brand Disinfectant Bleach Toilet Bowl Cleaner](англ.). Pharmaceutical and Healthcare Online Databases Drugs-About.com. Дата обращения: 28 января 2010. Архивировано 20 августа 2011 года.
↑Бурбелло А. Т., Шабров А. В. Современные лекарственные средства: Клинико-фармакологический справочник практического врача. — 4-е издание, переработанное и дополненное. — М.: Олма Медиа Групп, 2007. — С. 396. — ISBN 978-5-373-01525-7.
↑ 12Натрия гипохлорит (неопр.). Справочник лекарств РЛС. Регистр лекарственных средств России РЛС. Дата обращения: 28 января 2010. Архивировано 10 октября 2012 года.
↑Мельников Н. Н. Пестициды. Химия, технология и применение. — М.: Химия, 1987. — С. 671.
↑Отбелка древесной массы (неопр.). Новый справочник химика и технолога. Сырье и продукты промышленности органических и неорганических веществ (часть II). ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 29 апреля 2014 года.
↑Ковернинский И. Н., Комаров В. И., Третьяков С. И., Богданович Н. И., Соколов О. М., Кутакова Н. А., Селянина Л. И. Комплексная химическая переработка древесины / Под редакцией проф. И. Н. Ковернинского. — Архангельск: Издательство Архангельского государственного технического университета, 2002. — С. 81. — ISBN 5-261-00054-3.
↑Синтетические моющие средства // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1995. — Т. 4. — С. 700. — ISBN 5-85270-092-4.
↑Продукция (неопр.). dondez.ru. Дата обращения: 7 сентября 2015. Архивировано 4 марта 2016 года.
↑ 12Кузубова Л. И., Кобрина В. Н. Химические методы подготовки воды (хлорирование, озонирование, фторирование): Аналитический обзор. — Новосибирск: СО РАН, ГННТБ, НИОХ, 1996. — Т. Выпуск 42. — 132 с. — (серия «Экология»).
↑Spellman F. R. Handbook of Water and Wastewater Treatment Plant Operations. — Second Edition. — Бока-Ратон: CRC Press, Taylor & Francis Group, 2009. — P. 647. — ISBN 978-1-4200-7530-4.
↑Обеззараживание гипохлоритом натрия (неопр.). Технологическое бюро инженера Шапиро А. С. «ЦентрХлорРеконструкция». Дата обращения: 29 января 2010. Архивировано из оригинала 10 ноября 2011 года.
↑ 12Lawrence S. A. Amines: Synthesis, Properties and Applications. — Cambridge: Cambridge University Press, 2004. — P. 176—177. — ISBN 0-521-78284-8.
↑Гидразин // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 1070—1071.
↑ 12Hydrazine and Derivatives // Kirk-Othmer Encyclopedia of Chemical Technology. — 4-th edition. — New York: John Wiley & Sons, 1994. — P. 281—282.
↑ 12Maxwell G. R. Synthetic Nitrogen Products: A Practical Guide to the Products and Processes. — New York: Kluwer Academic / Plenum Publishers, 2004. — P. 342. — ISBN 0-306-48225-8.
↑Антраниловая кислота // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1. — С. 348.
↑ 12Szmant H. H. Organic Building Blocks of the Chemical Industry. — John Wiley & Sons, 1989. — 716 p. — (0-471-85545-6).
↑Шнайдман Л. О. Производство витаминов. — М.: Пищевая промышленность, 1973. — С. 274—275.
↑Сарафанова Л. А. Пищевые добавки: Энциклопедия. — 2-е изд., испр. и доп. — СПб.: ГИОРД, 2004. — С. 346−347. — 808 с. — ISBN 5-901065-79-4.
↑Физер Л., Физер М. Реагенты для органического синтеза / Пер. с англ., под редакцией акад. И. Л. Кнунянца и докт. хим. наук Р. Г. Костяновского. — М.: Мир, 1970. — Т. 2. — С. 407.
↑ 123Hudlický M. Oxidation in Organic Chemistry. — ACS monograph 186. — Washington: American Chemical Society, 1990. — P. 27. — ISBN 0-8412-1780-7.
↑Li J. J., Limberakis C., Pflum D. A. Modern Organic Synthesis in the Laboratory: A Collection of Standard
Experimental Procedures. — New York: Oxford University Press, 2007. — P. 69. — ISBN 978-0-19-518798-4.
↑Сакагучи реакция // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1995. — Т. 4. — С. 568. — ISBN 5-85270-092-4.
↑Hopkins C. Y., Chisholm M. J.[www.erowid.org/archive/rhodium/chemistry/5-chlorovanillin.hypochlorite.html Chlorination by Aqueous Sodium Hypochlorite](англ.). Can. J. Res. B, 24, 208 (1946). Rhodium site archive. Дата обращения: 30 января 2010. Архивировано 20 августа 2011 года.
↑Общая органическая химия. Кислородсодержащие соединения = Comprehensive Organic Chemistry / Под ред. Д. Бартона и В. Д. Оллиса. — М.: Химия, 1982. — Т. 2. — С. 62—63.
↑Sodium hypochlorite solution(англ.). Chlorine and chlorine compounds. BASF. The Inorganics Division. Дата обращения: 25 января 2010. Архивировано 20 августа 2011 года.
↑Охрана природы. Очистка сточных вод // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1992. — Т. 3. — С. 860. — ISBN 5-85270-039-8.
↑Травление (неопр.). Новый справочник химика и технолога. Общие сведения. Строение вещества. Физические свойства важнейших веществ. Ароматические соединения. Химия фотографических процессов. Номенклатура органических соединений. Техника лабораторных работ. Основы технологии. Интеллектуальная собственность. ChemAnalytica.com. Дата обращения: 25 января 2010. Архивировано 20 мая 2010 года.
↑Крахмал // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 988—989. — ISBN 5-85270-035-5.
↑Иприт // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 533. — ISBN 5-85270-035-5.
↑Льюизит // Химическая энциклопедия / И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 1215—1216. — ISBN 5-85270-035-5.
↑Франке З., Франц П., Варнке В. Химия отравляющих веществ / Пер. с нем., под редакцией акад. И. Л. Кнунянца и д-ра хим. наук Р. Н. Стерлина. — М.: Химия, 1973. — Т. 2. — С. 333—336.
Беляк А. А., Касаткина А. Н., Гонтовой А. В., Смирнов А. Д., Привен Е. М., Благова О. Е. К вопросу об использовании растворов гипохлорита натрия в водоподготовке // Питьевая вода. — 2007. — № 2. — С. 25—34.
Перова М. Д., Петросян Э. А., Банченко Г. В. Гипохлорит натрия и его использование в стоматологии // Стоматология. — 1989. — № 2. — С. 84—87.
Фурман Л. А.Глава 3. Гипохлорит натрия // Хлорсодержащие окислительно-отбеливающие и дезинфицирующие вещества. — М.: Химия, 1976. — С. 48—57.
Эвентов В. Л., Андрианова М. Ю., Кукаева Е. А. Детоксикация и дезинфекция гипохлоритом натрия // Медицинская техника. — 1998. — № 6. — С. 36—39.
Casson L., Bess J. Conversion to On-Site Sodium Hypochlorite Generation: Water and Wastewater Applications. — CRC Press, 2002. — 224 p. — ISBN 978-158716094-3.
Chartier R. A.Bleaching Agents. Sodium Hypochlorite // Encyclopedia of Chemical Processing and Design: Volume 4 — Asphalt Emulsion to Blending / Edited by John J. McKetta, William A. Cunningham. — New York: Marcel Dekker, Inc, 1977. — P. 434—437. — ISBN 0-824-72454-2.
Weisblatt J.Sodium Hypochlorite // Chemical Compounds / Project editor Charles B. Montney. — Thomson Gale, 2006. — P. 759—763. — ISBN 1-4144-0150-7.
White’s Handbook of Chlorination and Alternative Disinfectants / Black & Veatch Corporation. — 5-th edition. — Hoboken: John Wiley & Sons, 2010. — P. 452—571. — ISBN 978-0-470-18098-3.
Эта статья входит в число избранных статей русскоязычного раздела Википедии.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист
Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).