Неоднократно упоминается у античных авторов. Сочинения самого Евдокса до нас не дошли, но его математические открытия изложены в «Началах Евклида». Среди его учеников были Каллипп, Менехм и Динострат.
О жизни Евдокса известно немного. Родился в Книде, на юго-западе Малой Азии. Учился медицине у Филистиона в Сицилии, потом математике (у пифагорейца Архита в Италии), далее присоединился к школе Платона в Афинах[2]. Около года провёл в Египте, изучал астрономию в Гелиополе. Позднее Евдокс переселился в город Кизик на Мраморном море, основал там собственную математико-астрономическую школу, читал лекции по философии, астрономии и метеорологии[3].
Около 368 года до н. э. Евдокс вместе с частью учеников вернулся в Афины. Умер в родном Книде, окружённый славой и почётом. Диоген Лаэртский сообщает некоторые подробности: скончался Евдокс на 53-м году жизни, были у него три дочери и сын по имени Аристагор[4].
Астрономия
Евдокса можно считать создателем античной теоретической астрономии как самостоятельной науки. В Кизике им была построена обсерватория, в которой впервые в Элладе велись систематические наблюдения за небом. Школа Евдокса выпустила первый в Греции звёздный каталог[5]. Гиппарх упоминал названия двух астрономических трудов Евдокса: «Явления» и «Зеркало»[6].
Евдокс первым решил задачу Платона, предложившего астрономам построить кинематическую модель, в которой видимые движения Солнца, Луны и планет получались бы как результат комбинации равномерных круговых движений. Модель Евдокса состояла из 27 взаимосвязанных сфер, вращающихся вокруг Земли (теория гомоцентрических сфер). Согласие этой модели с наблюдениями было для того времени неплохим; исключением было движение Марса, который неравномерно движется по орбите, далёкой от круговой, и её крайне трудно приблизить равномерным вращением сфер.
Теорию Евдокса с математической точки зрения усовершенствовал Каллипп, у которого число сфер возросло до 34. Дальнейшее усовершенствование теории было связано с Аристотелем, который разработал механизм передачи вращения от наружных сфер к внутренним; при этом число сфер возросло до 56. В дальнейшем Гиппарх и Клавдий Птолемей отказались от теории гомоцентрических сфер в пользу теории эпициклов, которая позволяет более точно смоделировать неравномерность видимого движения небесных тел.
Евдокс считал Землю шарообразным телом, ему приписывается одна из первых оценок длины земного меридиана в 400 000 стадиев[7], или примерно 70 000 км. Евдокс пытался определить сравнительную величину небесных тел. Он знал, что Солнце больше Луны, но ошибочно полагал, что отношение их диаметров равно 9:1[5]. Ему же приписывают определение угла между эклиптикой и небесным экватором, то есть, с современной точки зрения, наклона земной оси к плоскости земной орбиты, равного 24°[8]. Евдоксу приписывают также изобретение горизонтальных солнечных часов.
Евдокс был знаком с вавилонской астрологией, относился к ней презрительно и чётко отделял от астрономии: «не следует доверять ни в малейшей степени халдеям и их предсказаниям и утверждениям о жизни человека, основанным на дне его рождения»[9].
Математика
Евдокс получил фундаментальные результаты в различных областях математики. Например, при разработке своей астрономической модели он существенно продвинул сферическую геометрию[5]. Однако особенно большое значение имели созданные им две классические теории.
Общая теория отношений
Числовые системы древних греков ограничивались натуральными числами и их отношениями (дробями, рациональными числами). Однако ещё пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, то есть отношение их длин не может быть представлено рациональным числом. Стало понятно, что пифагорейская арифметика должна быть каким-то образом расширена с тем, чтобы включать все результаты измерений. Это и сделал Евдокс. Его теория дошла до нас в изложении Евклида (Начала, книга V)[10].
В дополнение к числам Евдокс ввёл более широкое понятие геометрической величины, то есть длины отрезка, площади или объёма. С современной точки зрения, число при таком подходе есть отношение двух однородных величин — например, исследуемой и единичного эталона[11]. Этот подход снимает проблему несоизмеримости. По существу, теория отношений Евдокса — это геометрическая модель вещественных чисел. Следует, однако, подчеркнуть, что Евдокс остался верен прежней традиции — он не рассматривал такое отношение как число; из-за этого в «Началах» многие теоремы о свойствах чисел затем заново доказываются для величин[12]. Признание иррациональностей как особого вида чисел произошло много позднее, под влиянием индийских и исламских математических школ[10].
В начале своего построения Евдокс дал аксиоматику для сравнения величин. Все однородные величины сравнимы между собой, и для них определены две операции: отделение части и соединение (взятие кратного). Однородность величин сформулирована в виде аксиомы, известной также как аксиома Архимеда: «Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга»[10]. Сам Архимед при изложении этой аксиомы сослался на Евдокса[13].
Далее Евдокс рассматривает отношения между величинами и определяет для них равенство[14]:
Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвёртой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвёртой, каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке.
В переводе на современный математический язык это означает, что отношения и равны, если для любых натуральных выполняется одно из трёх соотношений:
либо и ;
либо и ;
либо и .
Фактически описанное свойство означает, что между и нельзя вставить рациональное число.
До Евдокса использовалось другое определение, через равенство последовательных вычитаний[15]; это определение эквивалентно определению Евдокса, но сложнее в использовании. Современным языком это можно выразить как равенство цепных дробей для отношений и [16].
Классическая теория Дедекинда для построения вещественных чисел поразительно похожа на изложение Евдокса. Соответствие между ними устанавливается так: пусть заданы две величины Евдокса ; дробь отнесём к классу , если , иначе — к классу . Тогда классы и определяют дедекиндово сечение поля рациональных чисел . Осталось отождествить отношение по Евдоксу с этим дедекиндовым числом[17].
Отметим, однако, что у Евдокса отсутствует аналог аксиомы непрерывности, и ниоткуда не следует, что всякое сечение определяет вещественное число[17].
Это своего рода античный анализ криволинейных фигур. Обоснование этого метода не опирается на актуальные бесконечно малые, но неявно включает понятие предела. Название «метод исчерпывания» предложил в 1647 годуГрегуар де Сен-Венсан, в античные времена у метода не было специального названия. Евклид изложил теорию метода исчерпывания в X книге «Начал», а в XII книге применил для доказательства нескольких теорем.
Метод заключался в следующем: для нахождения площади (или объёма) некоторой фигуры в эту фигуру вписывалась монотонная последовательность других фигур и доказывалось, что их площади (объёмы) неограниченно приближаются к площади (объёму) искомой фигуры. Затем вычислялся предел последовательности площадей (объёмов), для чего выдвигалась гипотеза, что он равен некоторому A и доказывалось, что обратное приводит к противоречию. Поскольку общей теории пределов не было (греки избегали понятия бесконечности), все эти шаги, включая обоснование единственности предела, повторялись для каждой задачи[18].
В такой форме метод исчерпывания хорошо вписывался в строго дедуктивное построение античной математики, однако имел несколько существенных недостатков. Во-первых, он был исключительно громоздким. Во-вторых, не было никакого общего метода для вычисления предельного значения A; Архимед, например, нередко выводил его из механических соображений или просто интуитивно угадывал. Наконец, этот метод не пригоден для нахождения площадей бесконечных фигур[18][19].
С помощью метода исчерпывания Евдокс строго доказал ряд уже известных в те годы открытий (площадь круга, объём пирамиды и конуса)[18].
Наиболее плодотворным этот метод стал в руках выдающегося последователя Евдокса, Архимеда, который смог его значительно усовершенствовать и виртуозно применял для многих новых открытий[18]. В средние века европейские математики также применяли метод исчерпывания, пока он не был вытеснен сначала более мощным и технологичным методом неделимых, а затем — математическим анализом.
↑Рожанский И. Д. Античная наука. — М.: Наука, 1980. — С. 104. — 198 с. — (История науки и техники).
↑James Oliver Thomson. History of ancient geography. Biblo & Tannen Publishers, Cambridge: Cambridge University Press, 1948, ISBN 0-8196-0143-8, p. 116.
Еремеева А. И., Цицин Ф. А. История астрономии. — М.: Изд-во МГУ, 1989. — ISBN 5-211-00347-0.
Житомирский С. В. Античная астрономия и орфизм. — М.: Янус-К, 2001. — ISBN 5-8037-0072-X.
Житомирский С. В.Планетарная гипотеза Евдокса и древняя мифология // Астрономия древних обществ. — М.: Наука, 2002. — С. 311—314. — ISBN 5-02-008768-8.
История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
Колчинский И.Г., Корсунь А.А., Родригес М.Г. Астрономы: Биографический справочник. — 2-е изд., перераб. и доп. — Киев: Наукова думка, 1986. — 512 с.
Лишевский В. П. Первый астроном // Земля и Вселенная. — 1992. — № 5. — С. 43—44.
Паннекук А. История астрономии. — М.: Наука, 1966.
Fowler D. H.Eudoxus: Parapegmata and Proportionality // Ancient and Medieval trends in the exact sciences. — Stanford: CSLI Publications, 2000. — P. 33—48.
Goldstein B. R., Bowen A. C. A new view of early Greek astronomy // Isis. — 1983. — № 74 (273). — P. 330—340.
Knorr W. R. Plato and Eudoxus on the planetary motions // Journal for the History of Astronomy. — 1990. — № 21. — P. 313—329.
Mendell H. Reflections on Eudoxus, Callippus and their Curves: Hippopedes and Callippopedes // Centaurus. — 1998. — № 40. — P. 177—275.