Циссоида — кривая, созданная из двух заданных кривых C1, C2 относительно точки O (полюса). Пусть L — прямая, проходящая через O и пересекающая C1 в точке P1, а C2 — в точке P2. Пусть P — точка на L такая, что OP = P1P2 (на самом деле имеются две таких точки, но P выбирается так, что P находится в том же направлении от O, что и P2 от P1). Множество таких точек P называется циссоидой кривых C1, C2 относительно O.
Слегка отличные, но, в сущности, эквивалентные определения можно встретить у различных авторов. Например, P может быть определена такой точкой, что OP = OP1 + OP2. Это определение эквивалентно приведённому, если C1 заменить её отражением относительно O. Также можно определить P как середину P1 и P2. Эта кривая совпадает с кривой из предыдущего определения с коэффициентом подобия 1/2.
Слово «циссоида» пришло из греческого языка — kissoeidēs «подобный плющу» — от kissos «плющ» и oeidēs «подобный».
Если C1 и C2 заданы в полярных координатах функциями и соответственно, то уравнение задаёт циссоиду C1 и C2 относительно начала координат. Однако точка может быть представлена различными способами в полярных координатах, так что могут существовать другие ветки циссоиды с другими уравнениями. В частности, C1 можно задать как
.
Таким образом, циссоида — это объединение кривых, заданных уравнениями
.
Часть из этих уравнений приведут к повторению кривых и могут быть исключены.
Например, пусть C1 и C2 — это эллипсы
.
Первая ветвь циссоиды задаётся уравнением
,
то есть, эта ветвь является одной точкой — началом координат. Эллипс также задаётся уравнением
,
так что вторая ветвь циссоиды задаётся уравнением:,
и эта кривая имеет форму овала.
Если C1 и C2 заданы параметрическими уравнениями
и
,
то циссоида относительно начала координат задаётся уравнением:.
Специальные случаи
Если C1 является окружностью с центром в точке O, то циссоида является конхоидой кривой C2.
Если C1 и C2 — две параллельные прямые, то их циссоида — третья прямая, параллельная этим двум.
Гиперболы
Пусть C1 и C2 — две непараллельные прямые и пусть O — начало координат. Пусть C1 и C2 задаются в полярных координатах уравнениями
и
.
Мы можем повернуть на угол так, что можем предположить, что . Тогда циссоида C1 и C2 относительно начала координат задаётся уравнением
.
Обозначив константные выражения, получим
что в декартовых координатах превращается в
.
Эта формула задаёт гиперболу, проходящую через начало координат. Таким образом, циссоида двух непараллельных прямых является гиперболой, проходящей через полюс. Похожие рассуждения показывают, в обратную сторону, что любая гипербола является циссоидой двух непараллельных прямых относительно любой точки на гиперболе.
Циссоиды Зарадника
Циссоида Зарадника (названа по имени Карела Зарадника[англ.]) определяется как циссоида конического сечения и прямой относительно любой точки на сечении. Эти циссоиды образуют широкое семейство рациональных кубических кривых, среди которых некоторые хорошо известны. В частности:
является циссоидой окружности и прямой относительно начала координат. Фактически это кривая, по которой семейство названо и некоторые авторы ссылаются на неё просто как на циссоиду.
Циссоида окружности и прямой , где k — параметр. Циссоиду называют конхоидой Слюза (эти кривые не являются реальными конхоидами). Это семейство включает в себя предыдущие примеры.