Актиній (Ac) |
---|
Атомний номер | 89 |
---|
Зовнішній вигляд простої речовини | важкий , сріблясто-білий радіоактивний метал |
---|
|
Атомна маса (молярна маса) | 227,0278 а.о.м. (г/моль) |
---|
Радіус атома | 188 пм |
---|
Енергія іонізації (перший електрон) | 665,5(6,90) кДж/моль (еВ) |
---|
Електронна конфігурація | [Rn] 6d1 7s2 |
---|
|
Ковалентний радіус | n/a пм |
---|
Радіус іона | (+3e) 118 пм |
---|
Електронегативність (за Полінгом) | 1,1 |
---|
Електродний потенціал | Ac←Ac3+ -2,13В Ac←Ac2+ -0,7В |
---|
Ступені окиснення | 3 |
---|
|
Густина | n/a г/см³ |
---|
Молярна теплоємність | n/a Дж/(К·моль) |
---|
Теплопровідність | n/a Вт/(м·К) |
---|
Температура плавлення | 1320 К |
---|
Теплота плавлення | (10,5) кДж/моль |
---|
Температура кипіння | 3470 К |
---|
Теплота випаровування | (292,9) кДж/моль |
---|
Молярний об'єм | 22,54 см³/моль |
---|
|
Структура ґратки | кубічна гранецентрована |
---|
Період ґратки | 5,310 Å |
---|
Відношення с/а | n/a |
---|
Температура Дебая | n/a К |
---|
|
Критична точка | н/д |
---|
|
Актиній у Вікісховищі |
Актиній (англ. actinium, нім. Aktinium) — радіоактивний хімічний елемент III групи періодичної системи елементів[1], символ Ас, ат. н. 89; ат.м. 227,0278. Найдовше живе бета-радіоактивний ізотоп 227Ас. Період напіврозпаду 21,773 р. Ізотопи 227Ас і 228Ас (наз. також мезоторий II, Ms Th II) входять до складу природних радіоактивних рядів. Вміст актинію у земній корі дуже малий (). Актиній — сріблясто-білий метал з граноцетричною кубічною ґраткою.
Досить важкий (густина 10,7 г/см³) і вельми хімічно активний. Його температура плавлення, визначена експериментально, 1040±50 °С, а температура кипіння, розрахована теоретично, близько 3200 °С[2]
Міститься у уранових та торієвих рудах. Високотоксичний. tпл = 1050 °C, tкип = 3590 °C.
Історія
Актиній був відкритий у 1899 французьким хіміком А. Деб'єрном (один з небагатьох добровільних помічників П'єра і Марії Кюрі в їх дослідженнях радіоактивних елементів[2]) у відходах від переробки уранової смоли, з якої видалили полоній та радій. Новий елемент був названий актинієм. Незабаром після відкриття Деб'єрна незалежно від нього німецький радіофізик Ф. Гізель з такої ж фракції уранової смоли, яка містить рідкісноземельні елементи, отримав сильно радіоактивний елемент і запропонував йому назву «Еман». Подальше дослідження показало ідентичність препаратів, отриманих Деб'єрном і Гізелем, хоча вони спостерігали радіоактивне випромінювання не самого актинію, а продуктів його розпаду — 227Th і 230Th.
Походження назви
Актиній, від грецького «ακτίνα» — промінь, блиск, сяйво.
Хімічні властивості
Конфігурація зовнішніх електронних оболонок 6d7s2; енергії послідовної іонізації відповідно дорівнюють 6,9; 12,06, 20 еВ. Металічний радіус 0,203 нм, радіус іона(+3) 0,111 нм. Значення електронегативності 1,00. У сполуках завжди має ступінь окиснення +3, проте у деяких процесах може короткочасно виникати іон Ac2+.
Актиній є найлегшим елементом серед актиноїдів — групи радіоактивних елементів, подібних до нього хімічно, що отримала назву на його честь, аналогічно тому як лантаноїди отримали назву на честь лантану. За хімічними властивостями схожий на лантан. У них дуже схожі хімічні властивості: загальна валентність (3+), близькі атомні радіуси (1,87 і 2,03 А), майже ідентична будова більшості сполук. Через це лантан використовують як сурогат актинію під час розробки процедур його підготовки або аналізу.
На повітрі актиній окиснюється до Ас2О3.
Відомі сполуки актинію з фтором (AcF3, AcOF), хлором (AcCl3, AcOCl), бромом (AcBr3, AcOBr), сіркою (Ac2S3), а також складні і нестійкі комплексні сполуки, такі як AcPO4·½H2O і Ac2(C2O4)3·10H2O.
Інші сполуки, такі як гідроксиди, йодиди, оксалати, фосфати та інші, ймовірно теж утворюються, проте не були отримані у достатніх кількостях для дослідження.
Водні розчини актинію безбарвні.
Іон актинію Ac3+ проявляє найбільш основні властивості серед усіх +3 іонів.
Як і у лантану, більшість солей актинію забарвлена в білий колір; окис також. А те, що актиній перевершує лантан за хімічною активністю, цілком природно. Це важчий метал-аналог: валентні електрони циркулюють далі від ядра.[2] Через високу радіоактивність світиться в темряві.
Розповсюдження і отримання
Природній актиній постійно утворюється при розпаді рідкісного ізотопу 235U (227Ac, T½ 21,7 років) і при розпаді торію 232Th (228Ac, T½ 6 годин)[7].
Загалом відомо 34 ізотопи актинію з масовими числами від 206 до 235, 4 з яких — метастабільні. З нестабільних ізотопів, найбільші періоди напіврозпаду мають 227Ac (21,772 років) і 225Ac (10,0 днів)[8].
Добування з природніх руд не має сенсу через малу концентрацію, тому актиній отримують в ядерних реакторах за реакцією:
Також, для постійного отримання 225Ac використовують торієво-актинієві генератори (так звані «торієві корови»), в яких актиній постійно утворюється з 229Th (з проміжним утворенням радію) і відділяється за допомогою аніоно-обмінної хроматографії[en][9].
Металевий актиній (у міліграмових кількостях) зуміли одержати двома способами: відновлюючи AcCl3 парами калію при 350 °С і з трифториду, діючи на нього пароподібним літієм. У останньому випадку знадобилася вища температура — понад 1000 °С, але одержані зразки були чистішими.[2]
Застосування
Практичне використання актинію обмежується джерелами нейтронів. Нейтрони в них утворюються при опромінюванні берилію-9 альфа-частинками. А дають альфа-частинки дочірні продукти актинію-227. Є підстави вважати, що актиній-берилієві нейтронні джерела зовсім не найкращі та не найекономічніші з пристроїв такого призначення.[2]
Альфа-випромінювання актинію-225 використовується для лікування ракових пухлин. При його розпаді (і подальших розпадах його продуктів розпаду) не утворюється жорсткого гамма-випромінювання, тому тканини, що знаходяться поруч з джерелом (на відстані до 100 мікронів) отримують значні дози опромінення, а решта організму лишається неушкодженною.
У 1970-х роках розроблялися ядерні батареї на основі актинію. За розрахунками, пристрій з 18 грамами актинію мав би потужність 250 Вт. Був виготовлений пробний генератор з 2 грамами актинію. Проте плутонієві генератори такого типу виявилися більш економічно доцільними.
Див. також
Примітки
Література
Посилання