There are more than 200 scientifically described species of obligate cavefish found on all continents, except Antarctica.[3][4] Although widespread as a group, many species have very small ranges and are threatened.[5][6]
Many adaptions seen in cavefish are aimed at surviving in a habitat with little food.[1] Living in darkness, pigmentation and eyes are useless, or an actual disadvantage because of their energy requirements, and therefore typically reduced in cavefish.[14][15][16] Other examples of adaptations are larger fins for more energy-efficient swimming, and a loss of scales and swim bladder.[17][18] The loss can be complete or only partial, for example resulting in small or incomplete (but still existing) eyes, and eyes can be present in the earliest life stages but degenerated by the adult stage.[19] In some cases, "blind" cavefish may still be able to see: Juvenile Mexican tetras of the cave form are able to sense light via certain cells in the pineal gland (pineal eye),[20] and Congo blind barbs are photophobic, despite only having retinas and optical nerves that are rudimentary and located deep inside the head, and completely lacking a lens.[21] In the most extreme cases, the lack of light has changed the circadian rhythm (24-hour internal body clock) of the cavefish. In the Mexican tetra of the cave form and in Garra andruzzii the circadian rhythm lasts 30 hours and 47 hours, respectively.[22][23] This may help them to save energy.[22] Without sight, other senses are used and these may be enhanced. Examples include the lateral line for sensing vibrations,[24][25][26] mouth suction to sense nearby obstacles (comparable to echolocation),[27] and chemoreception (via smell and taste buds).[28][29] Although there are cavefish in groups known to have electroreception (catfish and South American knifefish), there is no published evidence that this is enhanced in the cave-dwellers.[30] The level of specialized adaptations in a cavefish is generally considered to be directly correlated to the amount of time it has been restricted to the underground habitat: Species that recently arrived show few adaptations and species with the largest number of adaptations are likely the ones that have been restricted to the habitat for the longest time.[31]
Some fish species that live buried in the bottom of aboveground waters, live deep in the sea or live in deep rivers have adaptations similar to cavefish, including reduced eyes and pigmentation.[32][33][34]
Cavefish are quite small with most species being between 2 and 13 cm (0.8–5.1 in) in standard length and about a dozen species reaching 20–23 cm (8–9 in). Only three species grow larger; two slender Ophisternon swamp eels at up to 32–36 cm (13–14 in) in standard length and a much more robust undescribed species of mahseer at 43 cm (17 in).[36][37] The very limited food resources in the habitat likely prevents larger cavefish species from existing and also means that cavefish in general are opportunistic feeders, taking whatever is available.[15][31] In their habitat, cavefish are often the top predators, feeding on smaller cave-living invertebrates, or are detritivores without enemies.[18] Cavefish typically have low metabolic rates and may be able to survive long periods of starvation. A captive Phreatobius cisternarum did not feed for a year, but remained in good condition.[38] The cave form of the Mexican tetra can build up unusually large fat reserves by "binge eating" in periods where food is available, which then (together with its low metabolic rate) allows it to survive without food for months, much longer than the aboveground form of the species.[39]
In the dark habitat, certain types of displays are reduced in cavefish,[17] but in other cases they have become stronger, shifting from displays that are aimed at being seen to displays aimed at being felt via water movement. For example, during the courtship of the cave form of the Mexican tetra the pair produce turbulence through exaggerated gill and mouth movements, allowing them to detect each other.[16] In general, cavefish are slow growers and slow breeders.[2] Breeding behaviors among cavefish vary extensively, and there are both species that are egg-layers and ovoviviparous species that give birth to live young.[16] Uniquely among fish, the genus Amblyopsis brood their eggs in the gill chambers (somewhat like mouthbrooders).[40]
Habitat
Although many cavefish species are restricted to underground lakes, pools or rivers in actual caves, some are found in aquifers and may only be detected by humans when artificial wells are dug into this layer.[38][41] Most live in areas with low (essentially static) or moderate water current,[1][31] but there are also species in places with very strong current, such as the waterfall climbing cavefish.[42] Underground waters are often very stable environments with limited variations in temperature (typically near the annual average of the surrounding region), nutrient levels and other factors.[1][43]Organic compounds generally only occur in low levels and rely on outside sources, such as contained in water that enters the underground habitat from outside, aboveground animals that find their way into caves (deliberately or by mistake) and guano from bats that roost in caves.[1][43][44] Cavefish are primarily restricted to freshwater.[1] A few species, notably the cave-dwelling viviparous brotulas, Luciogobius gobies, Milyeringa sleeper gobies and the blind cave eel, live in anchialine caves and several of these tolerate various salinities.[1][45][46][47][48]
Range and diversity
The more than 200 scientifically described obligate cavefish species are found in most continents, but there are strong geographic patterns and the species richness varies.[3] The vast majority of species are found in the tropics or subtropics.[49] Cavefish are strongly linked to regions with karst, which commonly result in underground sinkholes and subterranean rivers.[1][7]
With more than 120 described species, by far the greatest diversity is in Asia, followed by more than 30 species in South America and about 30 species in North America.[3][7] In contrast, only 9 species are known from Africa, 5 from Oceania,[7] and 1 from Europe.[4][50] On a country level, China has the greatest diversity with more than 80 species, followed by Brazil with more than 20 species. India, Mexico, Thailand and the United States of America each have 9–14 species.[1][3][51] No other country has more than 5 cavefish species.[7][52][53]
Being underground, many places where cavefish may live have not been thoroughly surveyed. New cavefish species are described with some regularity and undescribed species are known.[5][7] As a consequence, the number of known cavefish species has risen rapidly in recent decades. In the early 1990s only about 50 species were known, in 2010 about 170 species were known,[55] and by 2015 this had surpassed 200 species.[3] It has been estimated that the final number might be around 250 obligate cavefish species.[56] For example, the first cavefish in Europe, a Barbatula stone loach, was only discovered in 2015 in Southern Germany,[4][50] and the largest known cavefish, Neolissochilus pnar (originally thought to be a form of the golden mahseer), was only definitely confirmed in 2019, despite being quite numerous in the cave where it occurs in Meghalaya, India.[36][37][57] Conversely, their unusual appearance means that some cavefish already attracted attention in ancient times. The oldest known description of an obligate cavefish, involving Sinocyclocheilus hyalinus, is almost 500 years old.[49]
As of 2019[update], the following underground-living fish species with various levels of troglomorphism (ranging from complete loss of eyes and pigment, to only a partial reduction of one of these) are known.[1][3][51][63]Phreatobius sanguijuela and Prietella phreatophila, the only species with underground populations in more than one country,[64][65] are listed twice. Excluded from the table are species that live buried in the bottom of aboveground waters (even if they have troglomorphic-like features) and undescribed species.
Species includes both aboveground and belowground forms (aboveground also in Central America). Sometimes considered a part of Astyanax mexicanus[66][67][68]
Species includes both aboveground and belowground forms (aboveground also in United States). Cave form sometimes considered a separate species, A. jordani[68]
Formerly placed in Barbus or Puntius instead. Aboveground populations have also been assigned to this species,[70] but its taxonomy is unresolved and a review has suggested that at least some of the underground populations might belong to Puntius binotatus or an undescribed species instead.[71][72]
Species includes both aboveground and belowground forms (aboveground also in the United Arab Emirates). A population in the United Arab Emirates has been reported to be underground,[51] but this is incorrect[3]
First described as a species of cavefish based on a single specimen, but a later review suggested that it was found in an area without underground waters and only is an albinistic individual of the aboveground Cobitis fahireae[78]
Aboveground populations widespread in Europe. Belowground population only discovered in 2015 and tentatively included in this species based on genetic evidence. Only known cavefish in Europe[4]
Traditionally in genus Schistura or Triplophysa.[79][80] Species includes both aboveground and belowground populations; the latter sometimes recognized as a separate subspeciesmicrophthalmus.[63]
Originally described as Monopterus indicus by K. C. Eapen, but as this name was already taken by the Bombay swamp eel, it was redescribed as Monopterus eapeni in 1991. When the species was moved to the genus Rakthamichthys, the indicusspecific epithet was revived.
Has mistakenly been reported to occur in Papua New Guinea,[3] but it is from Western New Guinea, the Indonesian part of the island.[92] The family Butidae was formerly considered a subfamily of Eleotridae[3]
One of two species in a unique fish family closely related to true snakeheads. Displays relatively few troglomorphisms despite living in underground aquifers, and thus could either be a recent arrival to the subterranean ecosystem or possibly a subtroglophile that periodically moves between the underground and surface.[59]
One of two species in a unique fish family closely related to true snakeheads. Displays relatively few troglomorphisms despite living in underground aquifers, and thus could either be a recent arrival to the subterranean ecosystem or possibly a subtroglophile that periodically moves between the underground and surface.[60]
Conservation
Although cavefish as a group are found throughout large parts of the world, many cavefish species have tiny ranges (often restricted to a single cave or cave system) and are seriously threatened. In 1996, more than 50 species were recognized as threatened by the IUCN and many, including several that are rare, have not been assessed at all.[2] For example, the critically endangeredAlabama cavefish is only found in the Key Cave and the entire population has been estimated at less than 100 individuals,[95] while the critically endangered golden cave catfish only is found in the Aigamas cave in Namibia and has an estimated population of less than 400 individuals.[96] The Haditha cavefish from Iraq and the Oaxaca cave sleeper from Mexico may already be extinct, as recent surveys have failed to find them.[97][98] In some other cases, such as the Brazilian blind characid which went unrecorded by ichthyologists from 1962 to 2004, the apparent "rarity" was likely because of a lack of surveys in its range and habitat, as locals considered it relatively common until the early 1990s (more recently, this species appears to truly have declined significantly).[41] Living in very stable environments, cavefish are likely more vulnerable to changes in the water (for example, temperature or oxygen) than fish of aboveground habitats which naturally experience greater variations.[43] The main threats to cavefish are typically changes in the water level (mainly through water extraction or drought), habitat degradation and pollution, but in some cases introduced species and collection for the aquarium trade also present a threat.[5][6] Cavefish often show little fear of humans and can sometimes be caught with the bare hands.[18] Most cavefish lack natural predators, although larger cavefish may feed on smaller individuals,[18] and cave-living crayfish, crabs, giant water bugs and spiders have been recorded feeding on a few species of cavefish.[99][100][101][102]
Caves in some parts of the world have been protected, which can safeguard the cavefish.[54] In a few cases such as the Omani blind cavefish (Oman garra), zoos have initiated breeding programs as a safeguard.[12] In contrast to the rarer species, the cave form of the Mexican tetra is easily bred in captivity and widely available to aquarists.[68][103] This is the most studied cavefish species and likely also the most studied cave organism overall.[104] As of 2006, only six other cavefish species have been bred in captivity, typically by scientists.[56]
^ abcdefghijklmnopRomero, Aldemaro, editor (2001). The Biology of Hypogean Fishes. Developments in Environmental Biology of Fishes. ISBN978-1402000768
^ abcdHelfman, G.S. (2007). Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources, pp. 41–42. Island Press. ISBN978-1-55963-595-0
^ abcFenolio, D.B.; Zhao, Y.; Niemiller, M.L.; and Stout, J. (2013). In-situ observations of seven enigmatic cave loaches and one cave barbel from Guangxi, China, with notes on conservation status. Speleobiology Notes 5: 19–33.
^ abProudlove, G.S. (2001). The conservation of hypogean fishes. Environmental Biology of Fishes 62: 201–213.
^ abcdefghRiesch, R.; Tobler, M.; and Plath, M. (2015). Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments.ISBN978-3319133614
^ abPlath, M.; and Tobler, M. (2007). Sex recognition in surface- and cave-dwelling Atlantic molly females (Poecilia mexicana, Poeciliidae, Teleostei): influence of visual and non-visual cues. acta ethol 10: 81–88
^Gross, J.B. (2012). The complex origin of Astyanax cavefish. BMC Evolutionary Biology 12: 105.
^ abNg, H.H. and Kottelat, M. (1998). "Pterocryptis buccata, a new species of catfish from western Thailand (Teleostei: Siluridae) with epigean and hypogean populations". Ichthyological Research. 45 (4): 393–399.
^ abcBurton, M.; et al. (2002). International Wildlife Encyclopedia, volume 3, Bro–Che (3rd ed.). International Society for Subterranean Biology. p. 410. ISBN978-2-9527084-0-1.
^ abRomero, S. and Green, S.M. (2005). "The end of regressive evolution: examining and interpreting the evidence from cave fishes". Journal of Fish Biology. 67 (1): 3–32.
^ abcdParzefall, J. and Trajano, E. (2010). "Behavioral Patterns in Subterranean Fishes". In Trajano, E.; Bichuette, M.E.; and Kapoor, B.G. (eds.). Biology of Subterranean Fishes. ISBN978-1578086702.
^Vreven, E.; A. Kimbembi ma Ibaka & S. Wamuini Lunkayilakio (2011). "The Congo blind barb: Mbanza-Ngungu's albino cave fish". In Darwall; Smith; Allen; Holland; Harrison & Brooks (eds.). The diversity of life in African freshwaters: Underwater, under threat. IUCN. pp. 74–75. ISBN978-2-8317-1345-8.
^Burt de Perera, T. (2004). "Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus". Anim.Behav 68: 291–295.
^Weber, A. (1995). The lateral line system of epigean and cave dwelling catfishes of the genus Rhamdia (Pimelodidae, Teleostei) in Mexico. Mem Biospeol 22: 215–225.
^Bibliowicz, J.; Alié, A.; Espinasa, L.; Yoshizawa, M.; Blin, M.; Hinaux, H.; Legendre, L.; Père, S.; and Rétaux, S. (2013). Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterráneo cave. EvoDevo 25.
^Kasumyan, A.O. & E.A. Marusov (2015). "Chemoorientation in the feeding behavior of the blind Mexican cavefish Astyanax fasciatus (Characidae, Teleostei)". Russian Journal of Ecology. 46 (6): 559–563. Bibcode:2015RuJEc..46..559K. doi:10.1134/s1067413615060053. S2CID17283377.
^Uiblein, F.; Ott, J.A.; and Stachowitsch, M. (1996). Deep-sea and extreme shallow-water habitats: Affinities and Adaptations. Biosystematics and Ecology-Series, Band 11. ISBN978-3-7001-2574-7.
^Lucanus, Oliver (2013). First Notes on the Husbandry of the Blind Cichlid Lamprologus lethops from the Congo River. Cichlid News vol. 22(1): 6–11.
^ abHarries, D.; T. Arbenz; N. Dahanukar; R. Raghavan; M. Tringham; D. Rangad; G. Proudlove (2019). "The world's largest known subterranean fish: a discovery in Meghalaya (NE India) of a cave-adapted fish related to the Golden Mahseer, Tor putitora (Hamilton 1822)". Cave and Karst Science. 46 (3): 121–126.
^Armbruster, J.W.; M.L. Niemiller & P.B. Hart (2016). "Morphological Evolution of the Cave-, Spring-, and Swampfishes of the Amblyopsidae (Percopsiformes)". Copeia. 104 (3): 763–777. doi:10.1643/ci-15-339. S2CID53608365.
^ abMoreira, C.R.; Bichuette, M.E.; Oyakawa, O.T; de Pinna, M.C.C.; and Trajano, E. (2010). Rediscovery and redescription of the unusual subterranean characiform Stygichthys typhlops, with notes on its life history. Journal of Fish Biology (London: Wiley InterScience) 76 (7): 1815–1824.
^McDowell, I. (10 November 2016). "Alabama Cavefish". Encyclopedia of Alabama. Retrieved 16 May 2017.
^Nielsen; Schwarzhans & Hadiaty (2009). "A blind, new species of Diancistrus (Teleostei, Bythitidae) from three caves on Muna Island, southeast of Sulawesi, Indonesia". Cybium. 33 (3): 241–245.
^Møller; Schwarzhans; Iliffe & Nielsen (2006). "Revision of the Bahamian cave-fishes of the genus Lucifuga (Ophidiiformes, Bythitidae), with description of a new species from islands on the Little Bahama Bank". Zootaxa. 33 (1223): 23–46. doi:10.11646/zootaxa.1223.1.3.
^ abMa, L.; and Y.-H. Zhao (2012). Cavefish of China. Pp. 107–125 in: White, W.B.; and D.C. Cuvier, editors. Encyclopedia of Caves. Elsevier. ISBN9780123838322
^ abcProudlove, G.S. (2010). Biodiversity and distribution of the subterranean fishes of the world. Pp. 41–63 in: Trajano, E.; Bichuette, M.E.; Kapoor, B.G., eds. The Biology of Subterranean Fishes. Science. ISBN978-1578086702
^Britz, Ralf; Kakkassery, Francy; Raghavan, Rajeev (2014). "Osteology of Kryptoglanis shajii, a stygobitic catfish (Teleostei: Siluriformes) from Peninsular India with a diagnosis of the new family Kryptoglanidae". Ichthyological Exploration of Freshwaters. 24 (3): 193–207.
^ abRaghavan, Rajeev; Dahanukar, Neelesh; Anoop, V. K.; Britz, Ralf (2019). "The subterranean Aenigmachanna gollum, a new genus and species of snakehead (Teleostei: Channidae) from Kerala, South India". Zootaxa. 4603 (2): 377–388. doi:10.11646/zootaxa.4603.2.10. PMID31717234. S2CID164781147.
^Britz, R. (2016). "Pillaiabrachia siniae, a new species of earthworm eel from northern Myanmar (Teleostei: Synbranchiformes: Chaudhuriidae)". Ichthyol. Explor. Freshwaters. 27 (1): 41–47.
^Kottelat, M.; T. Whitten (1996). Freshwater Biodiversity in Asia: With Special Reference to Fish. Vol. 23–343. The World Bank. p. 32 – via World Bank Technical Papers.
^Hamidan, N.H.; M.F. Geiger; J. Freyhof (2014). "Garra jordanica, a new species from the Dead Sea basin with remarks on the relationship of G. ghorensis, G. tibanica and G. rufa (Teleostei: Cyprinidae)". Ichthyol. Explor. Freshwaters. 25 (3): 223–236.
^Esmaeli, H.R.; G. Sayyadzadeh; B.W. Coad; S. Eagderi. "Review of the genus Garra Hamilton, 1822 in Iran with description of a new species: a morpho-molecular approach (Teleostei: Cyprinidae)". Iran. J. Ichthyol. 3 (2): 82–121.
^Zhang, C. & Zhao, Y.-H. (2016). Species Diversity and Distribution of Inland Fishes in China. Science Press. p. 296. ISBN9787030472106.
^Kottelat, M. (2017). "Speolabeo, a new genus name for the cave fish Bangana musaei (Teleostei: Cyprinidae)". Zootaxa. 4254 (4): 531–541. doi:10.11646/zootaxa.4254.4.6. PMID28609956.
^Freyhof, J.; E. Bayçelebi; M. Geiger (2018). "Review of the genus Cobitis in the Middle East, with the description of eight new species (Teleostei: Cobitidae)". Zootaxa. 4535 (1): 1–75. doi:10.11646/zootaxa.4535.1.1. PMID30647339. S2CID58634705.
^Binoy; Roshan & Rakesh (2012). "Occurrence of Kryptoglanis shajii, an enigmatic subterranean-spring catfish (Siluriformes, Incertae sedis) in the channels of paddy fields". Current Science. 102 (2): 161.
^Espinasa, L. & W.R. Jeffery (2003). "A troglomorphic sculpin (Pisces: Cottidae) population: geography, morphology and conservation status". Journal of Cave and Karst Studies. 65 (2): 93–100.
^Williams, J.D. & W.M. Howell (1979). "An albino sculpin from a cave in the New River drainage of West Virginia (Pisces: Cottidae)". Brimleyana. 1: 141–146.
^ abAdams, G.L.; B.M. Burr; J.L. Day & D.E. Starkey (2013). "Cottus specus, a new troglomorphic species of sculpin (Cottidae) from southeastern Missouri". Zootaxa. 3609 (5): 484–494. doi:10.11646/zootaxa.3609.5.4. PMID24699612.
^Pouyaud; Kadarusman; Hadiaty; Slembrouck; Lemauk; Kusumah & Keith (2013). "Oxyeleotris colasi (Teleostei: Eleotridae), a new blind cave fish from Lengguru in West Papua, Indonesia". Cybium. 36 (4): 521–529.
^ abcChakrabarty, P. (2010). "Status and phylogeny of Milyeringidae (Teleostei: Gobiiformes), with the description of a new blind cave-fish from Australia, Milyeringa brooksi, n. sp". Zootaxa. 2557: 19–28. doi:10.11646/zootaxa.2557.1.2.
^"Alabama Cavefish". U.S. Fish and Wildlife Service. Archived from the original on 7 October 2014. Retrieved 12 October 2011.
^Klaus, S. & M. Plath (2011). "Predation on cave fish by freshwater crab Avotrichodactylus bidens (Bott, 1969) (Brachyura, Trichodactylidae) in Mexican sulfur cave". Crustaceana. 84 (4): 411–418. doi:10.1163/001121611X560853.
^Horstkotte; Riesch; Plath & Jäger (2010). "Predation by three species of spiders on a cave fish in a Mexican sulphur cave". Bull. Br. Arachnol. Soc. 15 (2): 55–58. doi:10.13156/arac.2010.15.2.55. S2CID41990323.
Artieda concejo de Navarra y capital Escudo ArtiedaUbicación de Artieda en España. ArtiedaUbicación de Artieda en Navarra.País España• Com. autónoma Navarra• Provincia Navarra• Merindad Merindad de Sangüesa• Comarca Comarca de Lumbier• Partido judicial Partido judicial de Aoiz• Municipio Urraúl BajoUbicación 42°42′47″N 1°19′27″O / 42.71305556, -1.32416667Población ...
Bandera del Municipio Santa Rita. La bandera del municipio Santa Rita fue creada el 6 de noviembre de 1990 como símbolo del municipio. Es un rectángulo dividido en 2 franjas horizontales iguales: Simbología El azul representa el lago de Maracaibo y el sitio por donde pasó Alonso de Ojeda muy cerca del municipio. El rojo representa la sangre de los libertadores de la independencia, como Pedro Lucas Urribarrí y José Cenobio Urribarrí, Santaritenses que pelearon en la Batalla Naval del La...
Alfonso Herrera Embajador de Buena Voluntad de ACNUR en la ONU Actualmente en el cargo Desde el 22 de septiembre de 2020[1] Información personalNombre de nacimiento Alfonso Herrera RodríguezOtros nombres PonchoNacimiento 28 de agosto de 1983 (40 años) Ciudad de México, MéxicoNacionalidad MexicanaLengua materna Español Características físicasAltura 1,78 m FamiliaCónyuge Diana Vázquez (2016-2021)Hijos 2EducaciónEducado en Edron Academy Información profesionalOc...
Learned society in Asian studies The Asiatic Society of MumbaiLocation in Mumbai, IndiaPredecessor•Literary Society of Bombay•Asiatic Society of BombayFormation1804; 219 years ago (1804)FounderSir James MackintoshFounded atMumbaiTypeLearned SocietyLiterary SocietyLocationTown Hall, Shahid Bhagat Singh Marg, Fort, Mumbai, Maharashtra, IndiaCoordinates18°55′54″N 72°50′10″E / 18.931589°N 72.836131°E / 18.931589; 72.836131Membership 2649Pr...
Revolutionary German government after World War I Council of the People's DeputiesCabinet of GermanyThe Council of the People's Deputies after the USPD pulled out: Philipp Scheidemann, Otto Landsberg, Friedrich Ebert, Gustav Noske, Rudolf Wissell (from left to right)Date formed10 November 1918Date dissolved19 January 1919People and organisationsHead of governmentFriedrich EbertMember partySPDUSPDStatus in legislature110 / 399 Minority HistoryPredecessorBaden cabinetSuccessorScheidemann cabine...
Ця стаття є частиною Проєкту:Фентезі (рівень: невідомий) Портал «Фентезі»Мета проєкту — створення якісних та інформативних статей на теми, пов'язані Фентезі. Ви можете покращити цю статтю, відредагувавши її, а на сторінці проєкту вказано, чим ще можна допомогти. Учасники п
Kloster St. Gabriel, Prag-Smíchov Die Abtei St. Gabriel war ein Benediktinerinnen-Kloster, das von 1888 bis 1918 als Kloster St. Gabriel (tschechisch Klášter svatého Gabriela) in der Holečkova ulice in Smíchov (heute ein Stadtteil von Prag) bestand. Danach befand es sich bis zum Jahr 2008 auf Schloss Bertholdstein bei Fehring in der Oststeiermark. Im Oktober 2007 schloss sich der Konvent als selbständiges Priorat der Föderation der Schwestern von der hl. Lioba an. Seit dem 29. Novembe...
Ini adalah nama Tionghoa; marganya adalah Tsai. Tsai Chih Chung (Hanzi: 蔡志忠; Pinyin: Cài Zhìzhōng; lahir tahun 1948) adalah seorang kartunis terkenal yang lahir di Huatan, Kabupaten Changhua, Taiwan dari keturunan orang Taiwan.[1] Dia terkenal untuk karya grafisnya mengenai filsafat dan sejarah Tiongkok, terutama para filsuf seperti Laozi, Liezi, dan Zhuangzi, di mana dia membuatnya dapat diterima dan memopulerkannya melalui penggunaan bahasa sederhana dan bantuan vis...
Сад Фінці-Контініітал. Il giardino dei Finzi-Contini Італійський постер до фільмуЖанр історична драмаРежисер Вітторіо Де СікаПродюсери Джанні Гект ЛукаріАртур БраунерАртур КоСценарист Ugo Pirrod, Бассані Джорджо, Чезаре Дзаваттіні[1] і Franco Brusatid[1]На основі роману Сад Фін...
Pour les articles homonymes, voir Guerre de Succession. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (octobre 2016). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En ...
1987 studio album by Def LeppardHysteriaStudio album by Def LeppardReleased3 August 1987 (1987-08-03)RecordedFebruary 1984 – January 1987StudioWisseloord (Hilversum)Windmill Lane (Dublin)Studio Des Dames (Paris)Genre Glam metal[1] hard rock[2] pop rock[3] Length62:32LabelPhonogramProducerRobert John Mutt LangeDef Leppard chronology Pyromania(1983) Hysteria(1987) Adrenalize(1992) Singles from Hysteria AnimalReleased: 20 July 1987 WomenReleased: ...
Approach to decision-making and policy based on empirical data and analysis Not to be confused with Policy-based evidence making, research conducted to support a pre-determined policy, or Evidence-based policing, an approach that utilizes evidence-based methods in police departments. Part of a series onEvidence-based practices Assessment Design Management Research Scheduling Dentistry Medical ethics Medicine Nursing Pharmacy in developing countries Toxicology Conservation Education Legislatio...
لمعانٍ أخرى، طالع هستيريا (توضيح). هستيريا ألبوم إستوديو لـديف ليبارد الفنان ديف ليبارد تاريخ الإصدار 3 أغسطس 1987 التسجيل فبراير 1984 - يناير 1987 في استوديوهات ويسيلورد، هيلفرسوم؛ استوديو ويندميل لين 2، دبلن؛ استوديو دي دام، باريس النوع جلام ميتال[1]، هارد روك المدة 62:...
Japanese god of lightning Narukami redirects here. For other uses, see Narukami (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Raijin – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this template message) Sculpture of Raijin from Sanjūsangen-d�...
Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. Ви можете допомогти вдосконалити цю статтю, погодивши її із чинними мовними стандартами. (жовтень 2010) Документ, який доводить факт діяльності ОУН в Криму[1]Р�...
Son of Herod the Great and ruler of part of his father's kingdom Tiberius featured on a coin struck by Philip the Tetrarch The territory of Philip, shown in brown, as given to him in 4 BCE following the death of his father, Herod the Great. Iturea and Auranitis are not included in the brown area. The tetrarchy of Philip (4 BCE - 34 CE), then kingdom of Herod Agrippa I (37 - 44 CE) and Herod Agrippa II (53 - 100 CE): Iturea, Trachonitis, Gaulanitis, Batanea, and Auranitis. Philip the Tetrarch ...
Old Geelong Post Office The current Geelong Post Office opened in 1994 and is located on the corner of Gheringhap and Little Myers Streets. The original post office was located on the corner of Ryrie and Gheringhap Streets. The Geelong Telegraph Station was located next door. History The first post office in Geelong, which opened around June 1840, was in a corner of a store in Barwon Terrace, South Geelong.[1] After August 1842, the Geelong Advertiser office was used as a post office....
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (November 2022) Some of this article's listed sources may not be reliable. Please help this article by looking for better, more reliable sources. Unreliable citations may be challenged...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) تشارلز ستانلي بلير معلومات شخصية الميلاد 20 ديسمبر 1927 كينغسفيل (ماريلند) الوفاة 20 أبريل 1980 (52 سنة) فالستون (ماريلند) مواطنة الولايات المتحدة ...