Share to: share facebook share twitter share wa share telegram print page

Mandelbulb

A 4K UHD 3D Mandelbulb video
A ray-marched image of the 3D Mandelbulb for the iteration vv8 + c

The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and further developed in 2009 by Daniel White and Paul Nylander using spherical coordinates.

A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions and bicomplex numbers.

White and Nylander's formula for the "nth power" of the vector in 3 is

where

The Mandelbulb is then defined as the set of those in 3 for which the orbit of under the iteration is bounded.[1] For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form:

The Mandelbulb given by the formula above is actually one in a family of fractals given by parameters (pq) given by

Since p and q do not necessarily have to equal n for the identity |vn| = |v|n to hold, more general fractals can be found by setting

for functions f and g.

Cubic formula

Cubic fractal

Other formulae come from identities parametrising the sum of squares to give a power of the sum of squares, such as

which we can think of as a way to cube a triplet of numbers so that the modulus is cubed. So this gives, for example,

or other permutations.

This reduces to the complex fractal when z = 0 and when y = 0.

There are several ways to combine two such "cubic" transforms to get a power-9 transform, which has slightly more structure.

Quintic formula

Quintic Mandelbulb
Quintic Mandelbulb with C = 2

Another way to create Mandelbulbs with cubic symmetry is by taking the complex iteration formula for some integer m and adding terms to make it symmetrical in 3 dimensions but keeping the cross-sections to be the same 2-dimensional fractal. (The 4 comes from the fact that .) For example, take the case of . In two dimensions, where , this is

This can be then extended to three dimensions to give

for arbitrary constants A, B, C and D, which give different Mandelbulbs (usually set to 0). The case gives a Mandelbulb most similar to the first example, where n = 9. A more pleasing result for the fifth power is obtained by basing it on the formula .

Fractal based on z → −z5

Power-nine formula

Fractal with z9 Mandelbrot cross-sections

This fractal has cross-sections of the power-9 Mandelbrot fractal. It has 32 small bulbs sprouting from the main sphere. It is defined by, for example,

These formula can be written in a shorter way:

and equivalently for the other coordinates.

Power-nine fractal detail

Spherical formula

A perfect spherical formula can be defined as a formula

where

where f, g and h are nth-power rational trinomials and n is an integer. The cubic fractal above is an example.

Uses in media

See also

References

  1. ^ "Mandelbulb: The Unravelling of the Real 3D Mandelbrot Fractal". see "formula" section.
  2. ^ Desowitz, Bill (January 30, 2015). "Immersed in Movies: Going Into the 'Big Hero 6' Portal". Animation Scoop. Indiewire. Archived from the original on May 3, 2015. Retrieved May 3, 2015.
  3. ^ Hutchins, David; Riley, Olun; Erickson, Jesse; Stomakhin, Alexey; Habel, Ralf; Kaschalk, Michael (2015). "Big Hero 6: Into the portal". ACM SIGGRAPH 2015 Talks. SIGGRAPH '15. New York, NY, USA: ACM. pp. 52:1. doi:10.1145/2775280.2792521. ISBN 9781450336369. S2CID 7488766.
  4. ^ Gaudette, Emily (February 26, 2018). "What Is Area X and the Shimmer in 'Annihilation'? VFX Supervisor Explains the Horror Film's Mathematical Solution". Newsweek. Retrieved March 9, 2018.

6. http://www.fractal.org the Fractal Navigator by Jules Ruis

Read other articles:

This article is about the municipality in the Colombian. For others uses, see Malaga (disambiguation). Municipality and town in Santander Department, ColombiaMálaga, SantanderMunicipality and town FlagSealLocation of the municipality and town of Málaga, Santander in the Santander Department of Colombia.Country ColombiaDepartmentSantander DepartmentArea • Total61 km2 (24 sq mi)Population (Census 2018[1]) • Total19,884 • Den...

 

Кирило Фандєєв Основна інформаціяПовне ім'я Фандєєв Кирило ВолодимировичДата народження 22 квітня 1982(1982-04-22) (41 рік)Місце народження ДонецькГромадянство УкраїнаНаціональність УкраїнецьПрофесія КомпозиторОсвіта Вища музичнаІнструменти Скрипка, фортепіаноЖанр Камерна,

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2019) انتخابات الرئاسة الإكوادورية 1932 1932 البلد الإكوادور التاريخ 30 أكتوبر 1932،  و31 أكتوبر 1932  انتخابات الرئاسة الإكوادورية 1931  [لغات أخرى]‏  انتخابات...

مؤمن الملا معلومات شخصية الميلاد 25 أكتوبر 1965 (العمر 58 سنة)دمشق الجنسية  سوريا إخوة وأخوات بسام الملا،  ومؤيد الملا  الحياة العملية المهنة مخرج تلفزيوني  اللغات العربية  سنوات النشاط 1989 - حتى الآن تعديل مصدري - تعديل   مؤمن الملا (مخرج تلفزيوني / منتج فني) ولد ون�...

 

Men's basketball team that represents Davidson College Davidson Wildcats 2023–24 Davidson Wildcats men's basketball team UniversityDavidson CollegeHead coachMatt McKillop (2nd season)ConferenceAtlantic 10LocationDavidson, North CarolinaArenaJohn M. Belk Arena (Capacity: 5,223)NicknameWildcatsStudent sectionD-BlockColorsRed and black[1]   Uniforms Home Away NCAA tournament Elite Eight1968, 1969, 2008NCAA tournament Sweet Sixteen1966, 1968, 1969, 2008NCAA tour...

 

Self-Portrait - Rembrandt Peale Rembrandt Peale (Bucks County, Pennsylvania, 22 Februari 1778 - Philadelphia, Pennsylvania, 3 Oktober 1860) ialah seorang pelukis neo-klasik Amerika Serikat. Ia adalah anak kedua pelukis terkenal Charles W. Peale. Meskipun banyak dianggap sebagai pelukis neo-klasik, gaya warna gelapnya menyerupai lukisan abad ke-15 dan 16. Ia banyak dikenal karena melukis Presiden George Washington dan Thomas Jefferson. Galeri Potret George Washington (1795 - 1823) Rubens Peale...

Crush adalah sebuah seri drama romansa Tiongkok tahun 2021 yang tayang di iQIYI. Seri tersebut menampilkan Lin Yanjun, Wan Peng, Li Jia Hao, dan Zeng Yi Xuan.[1] Sinopsis Sang Wu Yan (Wan Peng) merupakan seorang mahasiswi tingkat akhir yang bercita-cita menjadi penyiar radio. Ia bekerja sebagai asisten produksi di sebuah stasiun radio dan menyukai penulis lagu misterius bernama Yi Jin (Lin Yanjun). Suatu hari, ia bertemu dengan Su Nian Qin (Lin Yanjun) yang merupakan sosok Yi Jin, san...

 

County in Oregon, United States County in OregonHarney CountyCountyHarney County Courthouse in Burns SealLocation within the U.S. state of OregonOregon's location within the U.S.Coordinates: 43°04′N 118°58′W / 43.07°N 118.97°W / 43.07; -118.97Country United StatesState OregonFoundedFebruary 23, 1889Named forWilliam S. HarneySeatBurnsLargest cityBurnsArea • Total10,226 sq mi (26,490 km2) • Land10,133 sq ...

 

Overview of driving in Slovenia A parking meter in Ljubljana. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Driving in Slovenia – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) Driving in Slovenia can be performed by licensed individuals over th...

Canadian politician (1947–2019) For other people named Greg Thompson, see Greg Thompson (disambiguation). The HonourableGreg ThompsonPCMinister of Intergovernmental Affairs of New BrunswickIn officeNovember 9, 2018 – September 10, 2019PremierBlaine HiggsPreceded byFrancine LandrySucceeded byBlaine HiggsMember of theNew Brunswick Legislative Assemblyfor Saint CroixIn officeSeptember 24, 2018 – September 10, 2019Preceded byJohn AmesMinister of Veterans AffairsIn officeFe...

 

大阪緑涼高等学校 北緯34度34分5.6秒 東経135度35分17.6秒 / 北緯34.568222度 東経135.588222度 / 34.568222; 135.588222座標: 北緯34度34分5.6秒 東経135度35分17.6秒 / 北緯34.568222度 東経135.588222度 / 34.568222; 135.588222過去の名称 相愛第二高等女学校藤井寺高等女学校藤井寺高等学校相愛第二高等学校大阪商業大学附属女子高等学校大阪女子短期大学附属高等�...

 

Lista stopni używanych w Siłach Zbrojnych Ukrainy wg wzoru z 2020 roku: Wojska Lądowe Ukrainy Kod NATO OF-10 OF-9 OF-8 OF-7 OF-6 OF-5 OF-4 OF-3 OF-2 OF-1 OF(D) Student Officer Naramiennik,nazwa ukraińska,transkrypcja ГенералHenerał Генерал-лейтенантHenerał-łejtenant Генерал-майорHenerał-major Бригадний генералBryhadnyj henerał ПолковникPołkownyk ПідполковникPidpołkownyk МайорMajor КапітанKapitan С�...

2006 Pokémon videogame spin-off This article is about the video game. For the movie, see Pokémon Ranger and the Temple of the Sea. 2006 video gamePokémon RangerDeveloper(s)HAL LaboratoryCreatures Inc.Publisher(s)JP: The Pokémon CompanyWW: NintendoProducer(s)Hiroyuki JinnaiYoichi YamamotoHiroaki TsuruDesigner(s)Hajime KuroyanagiShigefumi KawaseHisatoshi TakeuchiHiroaki ItoWriter(s)Toshinobu MatsumiyaAkihito TodaComposer(s)Takuto KitsutaKinta SatoSeriesPokémonPlatform(s)Nintendo DSReleaseJ...

 

Jaringan tulang sejati sebagai contoh jaringan ikat Jaringan ikat adalah jaringan yang memiliki fungsi untuk mengikat serta menyokong bagian jaringan yang lain.[1] Penyusun jaringan ikat adalah sel yang tersusun dalam suatu matriks ekstraseluler dan tersusun menyebar.[1] Matrik tersebut biasanya berupa cairan, benda kenyal seperti agar dan padatan.[1] Jaringan ikat ada beberapa macam yaitu jaringan ikat longgar, jaringan adiposa, jaringan ikat berserat, tulang rawan, t...

 

Disambiguazione – Eurovision rimanda qui. Se stai cercando l'organismo internazionale di coordinamento da cui il festival prende il nome, vedi Eurovisione. Eurovision Song Contest(FR) Concours Eurovision de la chanson Il trofeo assegnato annualmente ad ogni vincitore LuogoEuropa Anni1956 – in corso Frequenzaannuale Fondato daMarcel Bezençon (su suggerimento di Sergio Pugliese) Datemaggio Generemusicale OrganizzazioneUER Sito ufficialeeurovision.tv Logo Modifica dati su Wikidata&#...

У этого термина существуют и другие значения, см. 5-я танковая армия. 5-я танковая армия(5 ТА) Вооружённые силы ВС СССР Род войск (сил) автобронетанковые → бронетанковые и механизированные Вид формирования танковая армия Формирование июнь 1942 Расформирование (преобразовани...

 

American singer and social media personality (born 1997) Bella PoarchPoarch in 2021Born (1997-02-08) February 8, 1997 (age 26)Pangasinan, PhilippinesNationalityAmericanOther namesDenarie Bautista Taylor[a]OccupationsSocial media personalitysingerYears active2020–presentSpouse Tyler Poarch ​ ​(m. 2019; sep. 2022)​Musical careerGenresPopdark pop[1]Instrument(s)VocalsLabelsWarner Musical artistMilitary careerAllegia...

 

Peta sungai Aras dan Kura Arran terletak di barat Laut Kaspia Arran (bentuk bahasa Persia Pertengahan), juga dikenal sebagai Aran, Ardhan (dalam bahasa Parthia), Al-Ran (in Arabic),[1][2] Aghvank dan Alvank (dalam bahasa Armenia), (bahasa Georgia: რანი-Ran-i ) arau Albania Kaukasia[1][3] (dalam bahasa Latin), adalah sebuah nama geografi yang dipakai pada zaman kuno dan abad pertengahan untuk menyebut wilayah yang terbentang di segitiga daratan, data...

Gunung IliwerungTitik tertinggiKetinggian1.018 m (3.340 kaki)Koordinat8°32′33″S 123°33′45″E / 8.5423822°S 123.5625243°E / -8.5423822; 123.5625243Koordinat: 8°32′33″S 123°33′45″E / 8.5423822°S 123.5625243°E / -8.5423822; 123.5625243 GeografiGunung IliwerungLokasi Gunung Iliwerung di Pulau Lembata, NTTTampilkan peta Pulau TimorGunung IliwerungGunung Iliwerung (Nusa Tenggara Timur)Tampilkan peta Nusa Tenggara TimurLeta...

 

This article may contain an excessive amount of intricate detail that may interest only a particular audience. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia's inclusion policy. (June 2016) (Learn how and when to remove this template message) Season of television series Britain's Next Top ModelSeason 2Judges Lisa Snowdon Paula Hamilton Jonathan Phang No. of contestants13WinnerLianna Fowler Country of originUn...

 
Kembali kehalaman sebelumnya