Dans la théorie des gammes et tempéraments, cette unité permet de calculer avec précision les intervalles propres à un système et de quantifier les différences entre eux. En ethnomusicologie, elle permet de relier les mesures effectuées sur des enregistrements au système de notation de la musique occidentale.
Depuis l'Antiquité et Pythagore, on a remarqué que les intervalles, dans le domaine musical, correspondent à des multiplications ou divisions, dans le domaine physique. Une octave en dessous ou au-dessus est une multiplication ou une division par deux de la longueur d'une corde vibrante ou d'un tuyau ; une quinte, une multiplication ou une division par un et demi, et de même pour les autres intervalles[1]. La fréquence de la vibration sonore est inversement proportionnelle à cette grandeur. À chaque montée d'une octave sur le piano par exemple la fréquence double et suit alors une progression géométrique ou exponentielle. La fonction inverse pour revenir aux touches du clavier est un logarithme[2] qui transforme un produit (×2) en somme (+1).
L'intérêt de l'expression logarithmique des intervalles est qu'elle correspond à la perception musicale. Les musiciens ont tendance à penser qu'une tierce majeure plus une tierce mineure forment une quinte alors que, pour les grandeurs physiques, c'est le rapport de fréquence de la tierce majeure multiplié par le rapport de fréquence de la tierce mineure qui donne le rapport de fréquence de la quinte. Si les représentations logarithmiques des intervalles semblent à première vue compliquées, elles sont en réalité plus intuitives[3].
Le cent
Un cent se définit comme le centième du demi-ton tempéré[4].
Le demi-ton au tempérament égal vaut 100 cents. La gamme chromatique tempérée étant composée de 12 demi-tons identiques, l'octave vaut 1200 cents. Le rapport de fréquence pour une octave étant de 2, on utilise le logarithme binaire ou logarithme de base 2. Cette fonction est très pratique car on a : log2 2=1 et log2 (21/12)=1/12. Or la racine douzième de 2 soit 21/12 est justement le rapport de fréquence pour le demi-ton tempéré[5]. Ainsi la valeur en cents de l'intervalle entre deux sons de fréquences fondamentales et est :
Un intervalle exprimé en cents se convertit en rapport de fréquences par :
Histoire
L'intérêt pour l'utilisation musicale des logarithmes est presque aussi ancien que les logarithmes eux-mêmes, inventés par John Napier en 1614[6]. Dès 1647, Juan Caramuel y Lobkowitz (1606-1682) décrit dans une lettre à Athanasius Kircher l'usage des logarithmes à base 2 en musique[7]. Dans cette base, l'octave vaut 1, le demi-ton 1/12, etc.
Joseph Sauveur a proposé dans ses Principes d'acoustique et de musique de 1701 l'utilisation des logarithmes à base dix, probablement parce que les tables en étaient disponibles ; il a utilisé des logarithmes calculés avec trois décimales. Le logarithme décimal de 2 vaut approximativement 0,301, que Sauveur propose de multiplier par 1000 pour obtenir des unités valant 1/301 d'octave. Comme 301 est le produit de deux nombres premiers, 43 et 7, il suggère de prendre des unités d'un quarante-troisième d'octave, qu'il appelle « mérides », divisées en 7 parties, les « heptamérides ». Sauveur a envisagé la possibilité de diviser chaque heptaméride en 10 « décamérides », mais il ne fait pas lui-même réellement usage de cette unité microscopique[8].
Au début du XIXe siècle Gaspard de Prony propose d'exprimer de façon décimale les intervalles en utilisant une graduation « analogue à la nature des quantités soumises au calcul », une échelle logarithmique à base , dans laquelle l'unité correspond à un demi-ton au tempérament égal[9].
Alexander John Ellis décrit en 1880 un nombre élevé de diapasons anciens qu'il avait relevés ou calculés. Notant que le baron de Prony avait proposé « le système qui mesure les intervalles en demi-tons égaux et fractions[a] », il indique l'intervalle en demi-tons avec deux décimales, c'est-à-dire avec une précision au centième de demi-ton, qui les sépare d'un diapason grave théorique, la3 = 370 Hz, pris comme référence[11]. Ellis publie en 1885 « On the Musical Scales of Various Nations » (Des échelles musicales de différentes nations ), dans lequel il compare les intervalles, exprimés en centièmes de demi-ton, d'échelles musicales décrites par diverses théories musicales non européennes[12]. La musicologie comparée, qui s'intitule ethnomusicologie depuis le milieu du XXe siècle, utilise largement cette unité à laquelle Ellis a donné le nom de cent.
D'autres subdivisions basées sur le logarithme décimal avaient été proposées auparavant, notamment la division de l'octave en 30 103 parties (soit 100 000 fois le logarithme décimal de 2, dix fois le décaméride de Sauveur), appelée atom par le mathématicien anglais Auguste De Morgan (1806 - 1871) et jot par John Curwen (1816 - 1880) sur une suggestion de Hermann von Helmholtz. Des valeurs aussi petites par rapport au seuil de discrimination humain des fréquences acoustiques n'ont cependant aucun intérêt musical[b]. Le savart, défini au XIXe siècle comme mille fois le logarithme décimal du rapport des fréquences, est proche de l'écart de hauteur qu'on peut tout juste distinguer entre deux sons musicaux[13].
Notes et références
Notes
↑Ellis « n'a pas eu la possibilité de voir son travail sur les logarithmes acoustiques »[10].
↑On trouvera une liste de valeurs de très petits intervalles logarithmiques sur le site Internet de la Fondation Huygens-Fokker, qui se consacre à l'étude des micro-intervalles et de leur usage.
↑Ernest William Hobson (1914), John Napier and the invention of logarithms, 1614, Cambridge, The University Press.
↑Ramon Ceñal, « Juan Caramuel, su epistolario con Athanasio Kircher, S.J. », Revista de Filosofia XII/44, Madrid 1954, p. 134 sq.
↑Joseph Sauveur, Principes d'acoustique et de musique ou Système général des intervalles des sons, Genève, Minkoff, , 68-[2] ; voir en ligne Mémoires de l'Académie royale des sciences, 1700, Acoustique ; 1701 Acoustique.
↑Gaspard de Prony, Instruction élémentaire sur les moyens de calculer les intervalles musicaux : en prenant pour unités ou termes de comparaison, soit l'octave, soit le douzième d'octave, et en se servant de tables qui rendent ce calcul extrêmement prompt et facile : formules analytiques, pour calculer le logarithme acoustique d'un nombre donné et réciproquement, progressions harmoniques, Paris, (lire en ligne) indique que « la méthode et les procédés de calcul formant l'objet de la présente instruction ont déjà été indiqués dans ma Mécanique analytique (1815) ».
↑(en) Alexander John Ellis, « On the History of Musical Pitch », Journal of the Society of Arts, , republié dans Studies in the History of Musical Pitch, Frits Knuf, Amsterdam, 1968, p. 11-62.
↑(en) Alexander John Ellis, « On the musical scales of various nations », Journal of the Society of Arts, no 33, , p. 485-527 (lire en ligne).
↑Robert Francès, La perception de la musique, Paris, Vrin, (1re éd. 1958), p. 57.