Share to: share facebook share twitter share wa share telegram print page

מישור מור

בטופולוגיה, מישור מוּר הוא דוגמה למרחב טופולוגי ספרבילי המקיים את תכונת האוסדורף, שאינו קומפקטי מקומית ואינו נורמלי. זוהי דוגמה פשוטה יחסית, ולכן נוח להיעזר בה כדוגמה נגדית לתופעות טופולוגיות שונות.

הגדרה

הטופולוגיה המאפיינת את מישור מור מוגדרת על המחצית העליונה של המישור האוקלידי הרגיל: . המבנה הטופולוגי מוגדר באופן הבא: קבוצה פתוחה היא קבוצה המכילה, יחד עם כל נקודה שלה , כדור מתאים:

  • כדור מהצורה עבור , אם ;
  • או קבוצה מהצורה עבור , אם .

למעט הישר הממשי, הטופולוגיה היא מטרית: חצי המישור הפתוח הוא תת-מרחב מטריזבילי. לעומת זאת, בנקודה שעל הישר, אפשר להרכיב בסיס מקומי מן הקבוצות , כאשר מייצג כדורים מהצורה , המשיקים לישר הממשי באותה נקודה. בטופולוגיה הרגילה, הנקודה אינה נקודת פנים של אף אחד מן הכדורים האלה.

תכונות

המרחב הוא ספרבילי, אבל תת-המרחב המורכב מן הנקודות על ציר ה-x הוא בעל טופולוגיה דיסקרטית, ובפרט (מכיוון שזו קבוצה שאינה בת מנייה) אינו ספרבילי. המרחב אינו קומפקטי, ואף אינו קומפקטי מקומית.

הוא מקיים את אקסיומת המנייה הראשונה אבל לא את תכונת לינדלוף (ולכן אינו מקיים את אקסיומת המנייה השנייה). המרחב הוא מרחב האוסדורף, ואף מקיים את תכונת ההפרדה T3, אבל אינו נורמלי.

ניתן להוכיח כי מישור מור הוא מרחב בייר, זאת על אף שהוא אינו מקיים את משפט הקטגוריה של בייר.

Kembali kehalaman sebelumnya