A biofizika a biológia és fizikahatártudománya, mely egyfelől fizikai módszereket használ az élő rendszerek tanulmányozására, másfelől a fizikai jelenségek (például radioaktív sugárzás, statikus mágneses terek stb.) élő szervezetre gyakorolt hatásaival foglalkozik. A biofizikai különböző ágainak érdeklődése a molekuláris biológiától az ökoszisztémákig a biológiai szerveződés valamennyi szintjére kiterjed. A biofizikai kutatások számos ponton átfednek a biokémia, a nanotechnológia, a biotechnika, az agrofizika és a rendszerbiológia érdeklődési körével.
A biofizika általában ugyanolyan kérdésekre keresi a választ, mint a biokémia és a molekuláris biológia, azonban a kérdéseket kvantitatív (mennyiségi) szemszögből közelíti meg. A terület művelői a sejt alrendszereinek (például DNS-, RNS-, fehérjeszintézis) kölcsönhatásait és e kölcsönhatások szabályozását vizsgálják. A kérdések megválaszolására változatos módszereket alkalmaznak.
Fő vizsgálómódszerei közé tartoznak a különféle spektroszkópiák (fluoreszcencia- és foszforeszcencia-, NMR-, röntgen-, polarizációs, CD-spektroszkópia), mikroszkópiák (fluoreszcencia-, epifluoreszcencia-, elektron-, konfokális, TIRF-, atomerőmikroszkópia), hőmennyiségmérés (kalorimetria), molekulák közvetlen manipulációja (optikai csipesz, atomerőmikroszkópia). A molekuláris biofizikusok a komplex rendszereket gyakran a kölcsönható egységek statisztikus mechanikai, termodinamikai és reakciókinetikai megközelítésével próbálják meg leírni. A változatos technikáknak köszönhetően a biofizikusok képesek a biológiai struktúrák (legyen az egy fehérjemolekula vagy egy összetettebb rendszer) közvetlen megfigyelésére, modellezésére és befolyásolására.
Hagyományos területei (a molekuláris és sejtbiofizika) mellett a modern biofizika a kutatások rendkívül széles területét öleli fel a bioelektronikától a kvantumbiológiáig. Szintén általános fejlődési irány, hogy a biofizikusok a klasszikus fizika és matematika (főként a statisztika) modelljeit és vizsgálómódszereit nagyobb rendszerek, úgymint szövetek, szervek, populációk és ökoszisztémák leírására használják.
Perutz MF. Proteins and Nucleic Acids: Structure and Function. Amsterdam: Elsevier (1962)
Perutz MF (1969). „The haemoglobin molecule”. Proceedings of the Royal Society of London. Series B173 (31), 113–40. o. DOI:10.1098/rspb.1969.0043. PMID4389425.
Dogonadze RR, Urushadze ZD (1971). „Semi-Classical Method of Calculation of Rates of Chemical Reactions Proceeding in Polar Liquids”. J Electroanal Chem32 (2), 235–245. o. DOI:10.1016/S0022-0728(71)80189-4.
Volkenshtein M.V., Dogonadze R.R., Madumarov A.K., Urushadze Z.D. and Kharkats Yu.I. Theory of Enzyme Catalysis.- Molekuliarnaya Biologia (Moscow), 6, 1972, pp. 431–439 (In Russian, English summary. Available translations in Italian, Spanish, English, French)
Cooper WG (2009). „Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4”. Biochem. Genet.47 (11–12), 892–910. o, 892. o. DOI:10.1007/s10528-009-9293-8. PMID19882244.
Goldfarb, Daniel. Biophysics Demystified. McGraw-Hill (2010). ISBN 0-07-163365-0