L'equazione di Legendre si può risolvere con metodi standard delle serie di potenze. Si hanno soluzioni date da serie convergenti per . Si hanno soluzioni convergenti anche per purché sia un intero non negativo. In tal caso le soluzioni al variare di formano una successione polinomiale detta successione dei polinomi di Legendre.
Il polinomio di Legendre ha grado e può essere espresso mediante la formula di Rodriguez:
Qui denota la delta di Kronecker, uguale a se e uguale a in caso contrario.
Una costruzione alternativa dei polinomi di Legendre consiste nell'effettuare il procedimento di Gram-Schmidt per la ortogonalizzazione della successione polinomiale e poi moltiplicare i nuovi polinomi ottenuti per con che indica l'-esimo polinomio di Legendre.
Questi sono i primi polinomi di Legendre:
Bibliografia
(EN) Milton Abramowitz e Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Mineola, Dover Publications, 1972. (V. cap. 8 e cap. 22.)
http://www.octave.org I polinomi di Legendre, come i polinomi associati, possono essere calcolati numericamente mediante funzione legendre del programma GNU Octave (distribuito con la licenza GPL nel modulo contribuito octave-forge/specfun di octave v. 2.1.35 o successive