Share to: share facebook share twitter share wa share telegram print page

Przestrzeń σ-zwarta

Przestrzeń σ-zwartaprzestrzeń topologiczna dająca się przedstawić jako suma przeliczalnie wielu swoich podzbiorów zwartych.

Własności

  • Każda przestrzeń zwarta jest σ-zwarta.
  • Każda przestrzeń σ-zwarta jest Lindelöfa jednak przeciwna implikacja nie zachodzi: prosta Sorgenfreya jest Lindelöfa, ale nie jest σ-zwarta (zbiory zwarte na prostej Sorgenfreya są co najwyżej przeliczalne, a ona sama jest nieprzeliczalna – przeliczalna suma zbiorów przeliczalnych jest nadal przeliczalna).
  • σ-zwarta przestrzeń lokalnie zwarta jest parazwarta.

Bibliografia

  • R. E. Edwards, Functional Analysis, Theory and Applications, Reinhart and Winston, New York, 1965.
Kembali kehalaman sebelumnya