Диофа́нтово уравнение (также уравнение в целых числах) — это уравнение вида
где — целочисленнаяфункция, например, полином с целыми коэффициентами, а переменные принимают целые значения. «Диофантовым» уравнение названо в честь древнегреческого математика Диофанта.
Также при рассмотрении вопроса разрешимости переменные часто разделяют на параметры (значения которых предполагаются фиксированными) и неизвестные. Так, уравнение
с параметрами и неизвестными считается разрешимым при данных значениях набора параметров , если существуют набор чисел , при которых это равенство становится верным.
Таким образом, диофантовыми уравнениями называют уравнения с целыми коэффициентами, для которых требуется найти целочисленные (или натуральные) решения. При этом количество неизвестных в уравнении должно быть не менее двух[1]. Своё название уравнения получили в честь выдающегося античного математика Диофанта Александрийского, который, как считается, первым систематически изучал неопределённые уравнения и описывал методы их решения[2]. Все сохранившиеся записи собраны в книгу «Арифметика»[3]. После Диофанта схожим изучением неопределённых уравнений занимались индусские математики, начиная примерно с пятого века[4]. В Европе решением неопределённых уравнений занимались практически все крупные алгебраисты своего времени: Леонардо Фибоначчи (ок.1170 — 1250 гг.), Франсуа Виет (1540—1603 гг.), Симон Стевин (ок. 1549—1620 гг.)[5].
Проблема решения уравнений в целых числах рассмотрена до конца для уравнений с одним неизвестным, а также для уравнений первой и второй степени с двумя неизвестными.
Согласно Великой теореме Ферма, это уравнение не имеет ненулевых целых решений при .
— гипотеза Эйлера утверждает, что для любого натурального числа n > 2 это уравнение неразрешимо в натуральных числах , то есть никакую n-ю степень натурального числа нельзя представить в виде суммы n-1 n-х степеней других натуральных чисел. Гипотеза является обобщением великой теоремы Ферма, но была опровергнута для n = 4 и n = 5, после чего была выдвинута гипотеза Ландера — Паркина — Селфриджа.
, где параметр n не является точным квадратом — уравнение Пелля.
В частности, линейное диофантово уравнение с двумя неизвестными имеет вид:
Если (то есть наибольший общий делитель не делит ), то уравнение (1) не разрешимо в целых числах. В самом деле, если , то число, стоящее слева в (1), делится на , а стоящее справа — нет. Справедливо и обратное: если в уравнении выполняется , то оно разрешимо в целых числах.
Пусть — частное решение уравнения . Тогда все его решения находятся по формулам:
Частное решение можно построить следующим образом. Если и делится на , то после деления всех коэффициентов на уравнение приобретает вид , где . Для последнего уравнения частное решение получается из соотношения Безу для :
исходя из которого, можно положить
Известна явная формула для серии решений линейного уравнения, следующая из теоремы Эйлера[6]:
где — функция Эйлера, а t — произвольный целый параметр.
Алгебраические диофантовы уравнения
При рассмотрении вопроса разрешимости алгебраических диофантовых уравнений можно воспользоваться тем, что любую систему таких уравнений можно преобразовать в одно диофантово уравнение степени не выше 4 в целых неотрицательных числах, разрешимое в том и только том случае, когда разрешима исходная система (при этом множество переменных и множество решений этого нового уравнения может оказаться совершенно другим).
Диофантовы множества
Диофантовым множеством называется множество состоящее из упорядоченных наборов из n целых чисел, для которого существует алгебраическое диофантово уравнение:
которое разрешимо тогда и только тогда, когда набор чисел принадлежит этому множеству. Рассматриваемое диофантово уравнение называется диофантовым представлением этого множества. Важный результат, полученный Ю. В. Матиясевичем, состоит в том, что каждое перечислимое множество имеет диофантово представление[7].
Если одна или более переменных в диофантовом уравнении входит в выражение показателя возведения в степень, такое диофантово уравнение называется экспоненциальным.
Общая теория решения таких уравнений отсутствует; частные случаи, такие как Гипотеза Каталана, были исследованы. Однако большинство из этих уравнений всё же удаётся решить специальными методами, такими как теорема Стёрмера[англ.] или даже метод проб и ошибок.
↑. Абакумова С. И., Гусева А. Н. Диофантовы уравнения Фундаментальные и прикладные исследования в современном
мире. — 2014. — Т. 1, № 6. — С. 133—137.
↑Башмакова И. Г. Диофант и диофантовы уравнения — Москва : Наука, 1972. — 68 с
↑Жмурова, И. Ю. Диофантовы уравнения: от древности до нашихдней. Молодой учёный. — 2014. — № 9. -С. 1-5
↑Кожаев, Ю. П. Греческий математик Диофант и диофантовы уравнения. Материалы IV Всероссийской научно — практической конференции «Культура и общество: история и современность»- Ставрополь : АГРУС. — 2015. — С. 150—154.
↑Мельников Р. А. Краткий обзор этапов развития диофантовых уравнений. Материалы международной научно-практической конференции «Математика: фундаментальные и прикладные исследования и вопросы образования» — Рязань : издательство РГУ им. С. А. Есенина, 2016. — С. 429—435.
Башмакова И. Г. Диофант и диофантовы уравнения. — М.: Наука, 1972. German translation: Diophant und diophantische Gleichungen. Birkhauser, Basel/ Stuttgart, 1974. English translation: Diophantus and Diophantine Equations. Translated by Abe Shenitzer with the editorial assistance of Hardy Grant and updated by Joseph Silverman. The Dolciani Mathematical Expositions, 20. Mathematical Association of America, Washington, DC. 1997.
Башмакова И. Г., Славутин Е. И. История диофантова анализа от Диофанта до Ферма. — М.: Наука, 1984.
Bashmakova, Izabella G. "Diophante et Fermat, " Revue d’Histoire des Sciences 19 (1966), pp. 289—306
Bashmakova, Izabella G. «Arithmetic of Algebraic Curves from Diophantus to Poincaré,» Historia Mathematica 8 (1981), 393—416.