Share to: share facebook share twitter share wa share telegram print page

Read other articles:

Infinite-order truncated square tiling Poincaré disk model of the hyperbolic plane Type Hyperbolic uniform tiling Vertex configuration ∞.8.8 Schläfli symbol t{4,∞} Wythoff symbol 2 ∞ | 4 Coxeter diagram Symmetry group [∞,4], (*∞42) Dual apeirokis apeirogonal tiling Properties Vertex-transitive In geometry, the truncated infinite-order square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{4,∞}. Uniform color In (*∞44) s...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Efesia Grammata (bahasa Yunani: Ἐφέσια Γράμματα, artinya kata-kata Efesus) adalah rumus ajaib Yunani Kuno yang telah terbukti dari abad ke-5 atau ke-4 SM. Menurut leksikografer Pausanias (Eust. Iklan. 20, 247, p. & Np; 1864), nam...

 

BalasjovБалашов Stad in Rusland Locatie in Rusland Kerngegevens Oblast Oblast Saratov Coördinaten 51° 32′ NB, 43° 10′ OL Algemeen Oppervlakte 73 km² Inwoners (2009) 91,622 Hoogte centrum 156 m Gebeurtenissen en bestuur Stadstatus 1780 Overig Postcode(s) 412300–412316 Netnummer(s) (+7) 84545 OKATO-code 63410 Locatie in oblast Saratov Portaal    Rusland Balasjov (Russisch: Балашов) ook wel Balashov genoemd is een stad in de oblast Saratov, Rusland. De s...

Were IDesaNegara IndonesiaProvinsiNusa Tenggara TimurKabupatenNgadaKecamatanGolewaKode pos86461Kode Kemendagri53.09.02.2002 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Untuk kegunaan lain, lihat Were (disambiguasi). Were pada tahun 1930-an Were I merupakan salah satu desa yang ada di kecamatan Golewa, kabupaten Ngada, provinsi Nusa Tenggara Timur, Indonesia. Desa ini merupakan satu dari 21 desa dan kelurahan yang berada di kecamatan Golewa. Desa ini memiliki kodepos 86461. ...

 

Xác định niên đại tuyệt đối hay Xác định độ tuổi tuyệt đối là quá trình xác định niên đại cho những niên đại hoặc đối tượng vật chất xác định trong khảo cổ và địa chất học.[1][2] Trong thực tế tên quá trình đôi khi rút gọn thành Xác định tuổi tuyệt đối. Kết quả xác định tuổi tuyệt đối cho ra giá trị tuổi tuyệt đối trong thang thời gian của các sự ki�...

 

مقاطعة سانت لويس     الإحداثيات 47°35′N 92°28′W / 47.58°N 92.46°W / 47.58; -92.46  [1] تاريخ التأسيس 1 مارس 1856  تقسيم إداري  البلد الولايات المتحدة[2][3]  التقسيم الأعلى مينيسوتا  العاصمة دولوث  خصائص جغرافية  المساحة 17767 كيلومتر مربع  عدد السكا�...

Dea AnggitaNama lahirDhea Anggita SariNama lainDea AnggitaLahir17 Juni 1997 (umur 26) Kota Surabaya, IndonesiaAsalSurabaya, IndonesiaGenrePop, Indie, Jazz, R&BPekerjaanPenyanyiTahun aktif2016–sekarangLabelIndependent Dea Anggita adalah seorang penyanyi wanita asal Surabaya, yang memulai karier musiknya dengan merilis single perdananya 'Seperti' pada tahun 2016. Dia adalah pemenang ‘Sunsilk Kilauborasi 2016’ oleh Sunsilk Indonesia untuk kawasan Jawa Timur, dan mendapatkan kesemp...

 

British sculptor and draughtsman (1755–1826) John FlaxmanBorn(1755-07-06)6 July 1755York, EnglandDied7 December 1826(1826-12-07) (aged 71)London, EnglandNationalityBritishKnown forSculpture and engravingMovementNeoclassicismSpouse Anne (Nancy) Denman ​ ​(m. 1782; died 1820)​ John Flaxman by Musgrave Watson, University College London, 1847 John Flaxman RA (6 July 1755 – 7 December 1826) was a British sculptor and draughtsman, and a ...

 

Questa voce sugli argomenti federazioni cestistiche e eSwatini è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Federazione cestistica dell'eSwatiniDisciplina Pallacanestro Fondazione2000 Nazione eSwatini ConfederazioneFIBA (dal 2000)FIBA Africa Sede Mbabane Modifica dati su Wikidata · Manuale La Federazione cestistica dell'eSwatini (in inglese eSwatini National Basketball Association)[1] è l'ente che controlla e organizza la pallaca...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Topik a...

 

Ngawang Lobsang Gyatso, o quinto Dalai Lama, implementou o tradicional cho-sid-nyi (sistema dual) no Tibete. O sistema do governo dual tibetano é a forma tradicional de governo do povo tibetano, pelo qual o Desi (governante temporal) coexiste com a autoridade espiritual do reino, geralmente unificado sob um terceiro governante individual. A distribuição efetiva do poder entre instituições varia de acordo com o tempo e a localização. O nome tibetano do sistema, Chos-srid-gnyis ou cho-si...

 

Aneurin BarnardAneurin Barnard bulan September 2013Lahir8 Mei 1987 (umur 36)Bridgend, Wales, Britania RayaPekerjaanAktorTahun aktif2003–sekarangSuami/istriLucy Faulks ​(m. 2017)​Anak1 Aneurin Barnard (/əˈnaɪrɪn/; lahir 8 Mei 1987) merupakan seorang aktor Wales. Ia dikenal sebagai aktor dalam film Dunkirk (2017) dan The Personal History of David Copperfield (2019). Latar belakang Aneurin Barnard lahir di Bridgend (bahasa Wales: Pen-y-bont ar Ogwr) p...

American lawyer Paul IgasakiChair of the Equal Employment Opportunity CommissionActingIn office1998–1998PresidentBill ClintonPreceded byGilbert F. CasellasSucceeded byIda L. Castro Personal detailsBorn (1955-07-25) July 25, 1955 (age 68)Political partyDemocraticSpouseLouann IgasakiEducationNorthwestern University (BA)University of California, Davis (JD) Paul M. Igasaki (born July 25, 1955)[1] was the Chair and Chief Judge of the Administrative Review Board at the U.S. Departmen...

 

2005 video game 2005 video gameBattlefield 2Developer(s)Digital Illusions CEPublisher(s)Electronic ArtsDesigner(s)Lars GustavssonLinus JosephsonErik SjövoldProgrammer(s)Andreas FredrikssonJonas KjellströmMats DalArtist(s)Mårten LundstenRiccard LindeComposer(s)Fredrik EnglundDavid TallrothJonas OstholmSeriesBattlefieldPlatform(s)Microsoft WindowsReleaseNA: June 21, 2005AU: June 22, 2005EU: June 24, 2005Genre(s)First-person shooterMode(s)Single-player, multiplayerArcade systemNo Battlefield ...

 

29th season of the Victorian Football League (VFL) 1925 VFL premiership seasonGeelong Football Club, premier teamTeams12PremiersGeelong 1st premiershipMinor premiersGeelong 3rd minor premiershipBrownlow MedallistColin Watson (St Kilda)Leading Goalkicker MedallistLloyd Hagger (Geelong)Matches played106Highest64,288← 19241926 → The 1925 VFL season was the 29th season of the Victorian Football League (VFL), the highest level senior Australian rules football competition in V...

Austrian politician and business executive Hartwig LögerLöger in 2017Vice-Chancellor of AustriaIn office22 May 2019 – 3 June 2019ChancellorSebastian KurzPreceded byHeinz-Christian StracheSucceeded byClemens JablonerMinister of FinanceIn office18 December 2017 – 3 June 2019ChancellorSebastian KurzPreceded byHans Jörg SchellingSucceeded byEduard Müller Personal detailsBorn (1965-07-15) 15 July 1965 (age 58)Selzthal, Styria, AustriaPolitical partyPeople's PartyAlma...

 

2019 British comedy film Get Duked!Film posterDirected byNinian DoffWritten byNinian DoffProduced by Brian Coffey Matthew Plouffe Laura Tunstall Starring Samuel Bottomley Viraj Juneja Rian Gordon Lewis Gribben Eddie Izzard Kate Dickie Georgie Glen James Cosmo CinematographyPatrick MellerEdited by Ninian Doff Ross Hallard Music byAlex MenziesProductioncompaniesMaterial PicturesHighland Midgie[1]Nowhere[1]Distributed byAmazon Studios[2]Release dates 8 March 201...

 

Analisis matematika → Analisis kompleksAnalisis kompleks Bilangan kompleks Bilangan real Bilangan imajiner Bidang kompleks Konjugat kompleks Bilangan kompleks satuan Fungsi kompleks Fungsi bernilai kompleks Fungsi analitik Fungsi holomorfik Persamaan Cauchy–Riemann Deret pangkat formal Teori dasar Nol dan kutub Teorema integral Cauchy Primitif lokal Rumus integral Cauchy Bilangan lilitan Deret Laurent Kesingularan terpencil Teorema residu Peta konformal Lema Schwarz Fungsi harmonik Persam...

American comedy musician (born 1959) For the album, see Weird Al Yankovic (album). Weird Al YankovicYankovic performing in 2010Background informationBirth nameAlfred Matthew YankovicBorn (1959-10-23) October 23, 1959 (age 64)Downey, California, U.S.OriginLynwood, California, U.S.Genres Comedy parody polka geek rock[1] Occupations Singer songwriter musician record producer actor author Instruments Vocals accordion keyboards DiscographyWeird Al Yankovic discographyYears active1976&...

 

1998 FIFA World Cup qualificationTournament detailsDates10 March 1996 – 29 November 1997Teams174 (from 6 confederations)Tournament statisticsMatches played643Goals scored1,922 (2.99 per match)Top scorer(s) Karim Bagheri(19 goals)← 1994 2002 → International football competition The 1998 FIFA World Cup qualification competition was a series of tournaments organised by the six FIFA confederations. Each confederation — the AFC (Asia), CAF (Africa), CONCACAF (North, ...

 
Kembali kehalaman sebelumnya