Вузол у математиці — вкладення кола (двовимірної сфери) в тривимірний евклідів простір, розглянуте з точністю до ізотопії. Основний предмет вивчення теорії вузлів. Два вузли топологічно еквівалентні, якщо один з них можна деформувати в інший, причому в процесі деформації не повинно виникати самоперетинів.
Частковим випадком є питання про розпізнавання тривіальності того чи іншого вузла, тобто про те, чи є заданий вузол ізотопним тривіальному вузлу (чи можна його розв'язати).
Трилисник нетривіальний, тобто його неможливо «розв'язати» в тривимірному просторі без розрізання. З математичної точки зору це означає, що трилисник не ізотопний тривіальному вузлу. Зокрема, не існує послідовності рухів Рейдемейстера, за допомогою яких вузол розв'язується.
Вісімка, чотириразовий вузол або вузол Лістинга, вузол ― один з найпростіших нетривіальних вузлів. Вісімка позначається символом . Вперше розглянутий Лістингом, учнем Гаусса, в 1847 році.
Трилисник хіральний в тому сенсі, що трилисник відрізняється від свого дзеркального відображення. Два варіанти трилисника відомі як лівобічний і правобічний. Неможливо шляхом деформації лівобічний варіант безперервним чином перевести у правобічний або навпаки. Тобто, ці два трилисники не ізотопні.
Також, можна показати, що трилисник (як правий, так і лівий) неізотопний вісімці.
П'ятилисник, відомий також як вузол у позначеннях Александера та Бріггса, вузол «перстач» і печатка Соломона, — це вузол, для якого число перетинів (мінімальне можливе число самоперетинів на діаграмі — плоскому малюнку — вузла) дорівнює п'яти.
Для багатокомпонентних вузлів у верхньому індексі зазначається кількість компонентів: наприклад, зачеплення двох кілець має символьний запис .
Це були приклади поліноміальних[1] вузлів. Неполіноміальним вузлом є дикий вузол[2]
Дикий вузол — вузол в евклідовому просторі такий, що не існує гомеоморфізму на себе, при якому переходить в замкнуту ламану, що складається зі скінченного числа відрізків.
Вузли та зачеплення
Вкладення (частіше — його образ) незв'язної суми примірників кола в або називається зачепленням кратності.
Вузли, що входять до даного зачеплення, називають його компонентами.
Simon Jonathan. Mathematical Approaches to Biomolecular Structure and Dynamics / Jill P. Mesirov, Klaus Schulten, De Witt Sumners. — 1996. — Т. 82. — (The IMA Volumes in Mathematics and its Applications). — DOI:10.1007/978-1-4612-4066-2_4.
P.G. Tait. Scientific papers. — Cambridge University Press, 1898. — Т. 1.
C. A. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. — American Mathematical Society, 2004. — ISBN 9780821836781.
Кроуэлл Р., Фокс Р. Введение в теорию узлов / Пер. с англ. — Череповец : Меркурий-Пресс, 2000. — 348 с. — ISBN 5-1148-0112-0..
Мантуров В. О. Теория узлов. — М. : РХД, 2005. — 512 с. — ISBN 5-93972-404-3..
Мантуров В. О. Лекции по теории узлов и их инвариантов. — М. : Едиториал УРСС, 2001. — 204 с. — ISBN 5-8360-0287-8..
Милнор Дж. Особые точки комплексных гиперповерхностей / Пер. с англ. — М. : Мир, 1971. — 127 с.
Мандельбаум Р. Четырёхмерная топология / Пер. с англ. — М. : Мир, 1981. — 286 с.
Hillman J. A. Alexander ideals of links B. — Hdlb. — N. Y., 1981.
H. Gruber. Estimates for the minimal crossing number. — 2003. — arXiv:math/0303273.
Yuanan Diao. The additivity of crossing numbers // Journal of Knot Theory and its Ramifications. — 2004. — Т. 13, вип. 7. — DOI:10.1142/S0218216504003524.