Oxendolone was introduced for medical use in 1981.[8] It is used only in Japan.[8][11]
Medical uses
Oxendolone is used in the treatment of benign prostatic hyperplasia (BPH) in Japan.[8][11] It has been used at a dosage of 200 mg once every 2 weeks via intramuscular injection.[17] Although it is approved for the treatment of BPH in Japan, concerns have been raised about its use for this condition due to poor efficacy seen in clinical trials.[11]
The acetateester of oxendolone is known as TSAA-328, while the caproate ester of oxendolone is known as TSAA-330.[21] They were never marketed.[21]
History
Oxendolone has been marketed in Japan by Takeda since 1981.[8]
Society and culture
Generic names
Oxendolone is the generic name of the drug and its INNTooltip International Nonproprietary Name, USANTooltip United States Adopted Name, and JANTooltip Japanese Accepted Name.[7][22] It is also known by its developmental code name TSAA-291.[7][22]
Brand names
Oxendolone is or has been sold under the brand names Prostetin and Roxenone.[7][22]
^ abcHenkler G, Klotzbach M, Koch H, Müller W, Richter J (November 1982). "[Progress in the area of drug development. 15]". Die Pharmazie (in German). 37 (11): 753–765. PMID6131442. [Oxendolone] has been clinically tested in Japan (weekly intramuscular injection of 200-400 mg) in prostatic hypertrophy.
^ abcHikichi Y, Yamaoka M, Kusaka M, Hara T (October 2015). "Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile". European Journal of Pharmacology. 765: 322–331. doi:10.1016/j.ejphar.2015.08.052. PMID26335395. According to the clinical data of TSAA-291, the plasma level of TSAA-291 after weekly intramuscular administration at 400 mg/kg for 12 weeks is approximately 100 nM (Drug Information).
^ abcOstri P, Swartz R, Meyhoff HH, Petersen JH, Lindgård G, Frimodt-Møller C, et al. (1989). "Antiandrogenic treatment of benign prostatic hyperplasia: a placebo controlled trial". Urological Research. 17 (1): 29–33. doi:10.1007/bf00261046. PMID2466359. S2CID30551043. Thirty patients were treated with weekly injections of oxendolone 200 mg during a 3 months' period, and 30 patients were allocated to placebo treatment.
^ abcdeMidgley I, Fowkes AG, Darragh A, Lambe R, Chasseaud LF, Taylor T (April 1983). "The metabolic fate of the anti-androgenic agent, oxendolone, in man". Steroids. 41 (4): 521–536. doi:10.1016/0039-128x(83)90092-2. PMID6419414. S2CID41224726. After intramuscular administration of 16β-ethyl-17β-hydroxy-4-[4-14C] estren-3-one (14C-oxendolone; 300 mg) to 3 human subjects, [...]
^ abcKirby RS, Christmas T (1991). "The potential value of 5-alpha-reductase inhibition in the treatment of bladder outflow obstruction due to benign prostatic hyperplasia". World Journal of Urology. 9 (1). doi:10.1007/BF00184713. ISSN0724-4983. S2CID38790542.
^ abcBashirelahi N, Ganesan S, Ekiko DB, Young JD, Shida K, Yamanaka H, Takahashi E (September 1986). "Effect of 16 beta-ethyl-17 beta-hydroxy-4-estren-3-one (TSAA-291) on the binding of promegestone (R5020) and methyltrienolone (R1881) to hyperplastic and neoplastic human prostate". Journal of Steroid Biochemistry. 25 (3): 367–374. doi:10.1016/0022-4731(86)90249-9. PMID2430141.
^ abSudo K, Yamazaki I, Masuoka M, Nakayama R (1979). "Anti-androgen TSAA-291. IV. Effects of the anti-androgen TSAA-291 (16 beta-ethyl-17 beta-hydroxy-4-oestren-3-one) on the secretion of gonadotrophins". Acta Endocrinologica. Supplementum. 229 (3 Supplb): 53–66. doi:10.1530/acta.0.092S053. PMID294107.
^ abcKatayama T, Umeda K, Kazama T (November 1986). "[Hormonal environment and antiandrogenic treatment in benign prostatic hypertrophy]". Hinyokika Kiyo. Acta Urologica Japonica (in Japanese). 32 (11): 1584–1589. PMID2435122.
^Dalton J, Gao W (2010). "Androgen Receptor". Nuclear Receptors: Current Concepts and Future Challenges. Proteins and Cell Regulation. Springer. pp. 143–182. doi:10.1007/978-90-481-3303-1_6. ISBN978-90-481-3302-4.
^Wakeling AE, Furr BJ, Glen AT, Hughes LR (December 1981). "Receptor binding and biological activity of steroidal and nonsteroidal antiandrogens". Journal of Steroid Biochemistry. 15: 355–359. doi:10.1016/0022-4731(81)90297-1. PMID7339263.
^Hikichi Y, Yamaoka M, Kusaka M, Hara T (October 2015). "Selective androgen receptor modulator activity of a steroidal antiandrogen TSAA-291 and its cofactor recruitment profile". European Journal of Pharmacology. 765: 322–331. doi:10.1016/j.ejphar.2015.08.052. PMID26335395.
^ abMasuoka M, Masaki T, Yamazaki I, Hori T, Nakayama R (1979). "Anti-androgen TSAA-291. III. Hormonal spectra of anti-androgen TSAA-291 (16 beta-ethyl-17 beta-hydroxy-4-oestren-3-one) and its derivatives". Acta Endocrinologica. Supplementum. 229: 36–52. doi:10.1530/acta.0.092s036. PMID294106.