Share to: share facebook share twitter share wa share telegram print page

Kegelschnitt

Kegelschnitte:
(1) liefert die Parabel, (2) Kreis und Ellipse, (3) die Hyperbel

Ein Kegelschnitt (lateinisch sectio conica) ist eine Kurve, die entsteht, wenn man die Oberfläche eines Doppelkegels mit einer Ebene schneidet. Enthält die Schnittebene die Kegelspitze, so entsteht als Schnitt entweder ein Punkt oder eine Gerade oder ein sich schneidendes Geradenpaar. Ist die Spitze nicht enthalten, so entstehen die nicht ausgearteten Kegelschnitte Ellipse, Kreis (eine Sonderform der Ellipse), Parabel oder Hyperbel.

Der Nachweis, dass im nicht ausgearteten Fall wirklich diese in der Ebene als Ortskurven definierten Kurven entstehen, lässt sich ohne Rechnung mit Hilfe der Dandelinschen Kugeln führen.[1] Der rechnerische Nachweis wird hier im Abschnitt Ebene Schnitte des Einheitskegels gegeben.

Ein Kegelschnitt kann auch als zweidimensionaler Sonderfall einer Quadrik angesehen werden und durch eine Gleichung 2. Grades, die allgemeine Kegelschnittgleichung, beschrieben werden.

Bettet man Ellipse, Hyperbel und Parabel in eine projektive Ebene ein, so entstehen projektive Kegelschnitte, die alle zueinander äquivalent sind, d. h., man kann sie durch geradentreue Abbildungen ineinander überführen.

Ellipse: Definition, ⇒ Animation
Parabel: Definition
Hyperbel: Definition
Ausgeartete Kegelschnitte:
sich schneidendes Geradenpaar, paralleles Geradenpaar, eine Gerade, ein Punkt

Gleichungen der Kegelschnitte

Die Kegelschnitte können in einem geeigneten x-y-Koordinatensystem durch Gleichungen 2. Grades beschrieben werden:

  • Ellipse mit Mittelpunkt M im Punkt (0,0) und der Hauptachse auf der x-Achse:
    (s. Bild). (Für ergibt sich ein Kreis.)
  • Parabel mit Scheitel im Punkt (0,0) und der Achse auf der y-Achse:
    (s. Bild).
  • Hyperbel mit Mittelpunkt M im Punkt (0,0) und der Hauptachse auf der x-Achse:
    (s. Bild).
  • Sich schneidendes Geradenpaar mit Schnittpunkt im Punkt (0,0):
  • Gerade durch den Punkt (0,0):
  • Punkt, der Punkt (0,0):

Der Vollständigkeit halber werden noch zwei weitere Fälle hinzugenommen, die nicht als eigentliche Kegelschnitte auftreten, aber auch durch Gleichungen 2. Grades beschrieben werden:

  • Paralleles Geradenpaar:
  • Die leere Menge:
    oder .

Die letzten beiden Fälle können als ebene Schnitte eines geraden Kreiszylinders auftreten. Ein Kreiszylinder lässt sich als Grenzfall eines Kegels mit Kegelspitze im Unendlichen auffassen. Deshalb nimmt man diese beiden Fälle mit zu den Kegelschnitten.

Ebene Schnitte des Einheitskegels

Kegelschnitt-Fälle

Um festzustellen, dass die oben als Kegelschnitte bezeichneten Kurven/Punkte tatsächlich beim Schnitt eines Kegels mit einer Ebene auftreten, schneiden wir hier den Einheitskegel (gerader Kreiskegel) mit einer Ebene, die parallel zur y-Achse ist. Dies ist keine Einschränkung, da der Kegel rotationssymmetrisch ist. Ein beliebiger gerader Kreiskegel ist das affine Bild des Einheitskegels und Ellipsen/Hyperbeln/Parabeln/… gehen bei einer affinen Abbildung wieder in ebensolche über.

Gegeben: Ebene Kegel .

Gesucht: Schnitt .

  • Fall I: In diesem Fall ist die Ebene senkrecht und und . Eliminiert man aus der Kegelgleichung, so erhält man .
    • Fall Ia: . In diesem Fall besteht der Schnitt aus dem Geradenpaar .
    • Fall Ib: . Die obige Gleichung beschreibt jetzt eine Hyperbel in der y-z-Ebene. Also ist auch die Schnittkurve selbst eine Hyperbel.
  • Fall II: . Eliminiert man aus der Kegelgleichung mit Hilfe der Ebenengleichung, so erhält man das Gleichungssystem
    • Fall IIa: Für geht die Ebene durch die Kegelspitze und Gleichung (1) hat jetzt die Gestalt .
      Für ist der Schnitt der Punkt .
      Für ist der Schnitt die Gerade
      Für ist der Schnitt das Geradenpaar
    • Fall IIb: Für geht die Ebene nicht durch die Kegelspitze und ist nicht senkrecht.
      Für geht (1) in über und die Schnittkurve ist eine Parabel.
      Für formen wir (1) um in .
      Für ergibt sich als Schnittkurve eine Ellipse und
      für ergibt sich eine Hyperbel.

Parameterdarstellungen der Schnittkurven findet man in Weblink CDKG, S. 106–107.

Zusammenfassung:

  • Enthält die Schnittebene die Kegelspitze nicht, entstehen die nicht ausgearteten Kegelschnitte (s. Bild zu Ib, IIb), nämlich eine Parabel, eine Ellipse oder eine Hyperbel, je nachdem, ob die Kegelachse von der Schnittebene unter dem gleichen, einem größeren oder einem kleineren Winkel geschnitten wird als von den Mantellinien des Kegels.
  • Liegt hingegen die Kegelspitze in der Schnittebene, entstehen die ausgearteten Kegelschnitte (s. Bild zu Ia, IIa), und zwar ein Punkt (nämlich die Kegelspitze), eine Gerade (nämlich eine Mantellinie) oder ein sich schneidendes Geradenpaar, (nämlich zwei Mantellinien).

Allgemeine Kegelschnittgleichung

Die allgemeine Gleichung für Kegelschnitte lautet

(Man beachte, dass die Parameter a und b nicht diejenigen des vorhergehenden Abschnitts sind.)

Die Parameter sind im Speziellen nicht alle 0. Falls ist, beschreibt die Gleichung eine Gerade oder ganz .

Ellipse: Hauptachsentransformation

Es soll jetzt nachgewiesen werden, dass als Lösungsmengen der allgemeinen Kegelschnittgleichung nur die obigen 8 Fälle auftreten. Das Ziel erreichen wir in zwei wesentlichen Schritten, der Hauptachsentransformation:

  1. Drehung des Koordinatensystems zur Beseitigung des Terms .
  2. Verschiebung des Nullpunktes (Translation) so, dass möglichst die linearen Terme verschwinden.

1. Schritt: Falls , führen wir die Drehung

um den Winkel mit bzw. , falls , durch.

Die Kegelschnittgleichung hat danach die Form

(statt wurde wieder benutzt).

2.Schritt:

Falls ist, führt eine quadratische Ergänzung zum Term und damit zur Verschiebung .
Falls ist, führt eine quadratische Ergänzung zum Term und damit zur Verschiebung .

Nach diesen beiden Schritten hat die Kegelschnittgleichung (x’ und y’ werden wieder durch x,y ersetzt) schließlich die Form

I: mit oder
II: oder mit .

Es können nur die obigen 8 Fälle auftreten:

Im Fall I ergeben sich eine Ellipse oder eine Hyperbel oder die leere Menge, falls ist, oder ein Punkt oder ein sich schneidendes Geradenpaar, falls ist.
Im Fall II ergeben sich eine Parabel, falls ist, oder ein paralleles Geradenpaar oder eine Gerade oder die leere Menge, falls ist.

Bei den hier durchgeführten Transformationen (Drehung, Verschiebung) wird die geometrische Form des durch die ursprüngliche Gleichung beschriebenen Kegelschnitts nicht verändert. Parameter wie Halbachsen bei Ellipsen und Hyperbel oder Brennweite bei der Parabel oder Winkel/Abstand zwischen sich schneidenden/parallelen Geraden lassen sich an dem transformierten Kegelschnitt ablesen.

Bemerkung: Der quadratische Anteil der allgemeinen Kegelschnittgleichung lässt sich auch mit Hilfe einer 2×2-Matrix schreiben:

Da eine Drehung und eine Verschiebung das Vorzeichen der Determinante der 2×2-Matrix nicht verändert, führt auf den Fall I und auf den Fall II. Weiß man, dass die ursprüngliche Kegelschnittgleichung einen nicht ausgearteten Kegelschnitt darstellt, kann man an der Determinante schon erkennen, ob es sich um eine Ellipse (), eine Hyperbel () oder eine Parabel () handelt.

Bemerkung:

  • Da die allgemeine Kegelschnittgleichung nur bis auf einen Faktor durch die 6 Koeffizienten bestimmt ist, sind für die Bestimmung der Koeffizienten 5 Punkte (Gleichungen) nötig. Aber: Nicht jede Wahl von 5 Punkten bestimmen einen Kegelschnitt eindeutig. (Gegenbeispiel: 4 Punkte auf einer Gerade, 1 Punkt nicht auf der Gerade.) Ein nicht ausgearteter Kegelschnitt (Ellipse, Hyperbel, Parabel) ist durch 5 Punkte, wobei keine 3 auf einer Gerade liegen, eindeutig bestimmt. Eine elegante Formel für den nicht ausgearteten Fall benutzt eine 6×6-Determinante:
    ( sind die vorgegebenen Punkte. Siehe [2].)
  • Ein Kreis ist schon durch 3 Punkte (nicht auf einer Geraden) eindeutig bestimmt. Die Gleichung erhält man durch die 4×4-Determinante
    .

Beispiel: Der Kegelschnitt durch die 5 Punkte hat nach Ausrechnen obiger Determinante die Gleichung oder nach Vereinfachung: . Die Hauptachsentransformation erfolgt mit einer Drehung um . Eine Verschiebung ist nicht nötig. Der Kegelschnitt hat die transformierte Gleichung und ist eine Ellipse.

Scheitelgleichung einer Kegelschnittschar

Kegelschnitt-Schar: p fest, variabel

Die Schar der nicht ausgearteten Kegelschnitte, deren Achse die -Achse ist und die im Punkt (0,0) einen Scheitel haben, lässt sich durch die Gleichung

beschreiben (zum Beweis siehe Leitlinien-Eigenschaft der Hyperbel). Für

erhält man einen Kreis,
für eine Ellipse,
für eine Parabel und
für eine Hyperbel.

ist die numerische Exzentrizität.

ist die Weite des Kegelschnitts, gemessen am Brennpunkt senkrecht zur Achse.
ist der Scheitelkrümmungskreisradius im Scheitel .
Für Ellipsen und Hyperbeln ist , wobei die große Halbachse und die lineare Exzentrizität ist. Im Fall einer Ellipse ist der Mittelpunkt und ein Brennpunkt. Im Fall einer Hyperbel ist der Mittelpunkt und ein Brennpunkt. Im Fall einer Parabel ist der Brennpunkt. Für den Kreis (mit ) liegt der Mittelpunkt bei und der Radius ist .

Polargleichung einer Kegelschnittschar

Kegelschnitt: zur Leitliniendefinition
Kegelschnittschar mit gemeinsamem Brennpunkt in Polarkoordinaten

Die Leitlinieneigenschaft der nicht ausgearteten Kegelschnitte lautet:

  • Die Menge der Punkte der euklidischen Ebene, deren Abstände zu einer vorgegebenen Geraden und einem vorgegebenen Punkt die Bedingung ist konstant, erfüllen, ist eine Ellipse, falls , eine Parabel, falls , eine Hyperbel, falls ist.

Ist der Punkt der Nullpunkt und hat die Gerade die Gleichung , so gilt in Polarkoordinaten (s. Bild):

Auflösen nach liefert zunächst . Setzt man , so erhält man die Polardarstellung der nichtausgearteten Kegelschnitte:

  • .

ist dabei der Halbparameter (halbe Breite des Kegelschnitts am Brennpunkt) und die numerische Exzentrizität. Wählt man den Halbparameter fest, so erhält man Kegelschnitte mit dem Nullpunkt als gemeinsamen Brennpunkt, und zwar

für den Kreis mit Mittelpunkt und Radius ,
für die Ellipse mit dem Mittelpunkt und den Halbachsen ,
für die Parabel mit dem Scheitel und der Gleichung ,
für die Hyperbel mit dem Mittelpunkt und den Halbachsen .

Kegelschnittbüschel

Sind die Gleichungen zweier Kegelschnitte gegeben, so lassen sich durch die Linearkombination

der Gleichungen neue Kegelschnitte erzeugen. Da proportionale Paare und äquivalente Gleichungen ergeben und daher zum selben Kegelschnitt gehören, schreibt man die Linearkombination oft so:

Kreisbüschel zu zwei vorgegebenen Kreisen (rot)
Kegelschnittbüschel zu 3 Geraden (rot: Kreis für , magenta: Ellipse, blau: Parabel für , grün: Hyperbel)
Kegelschnitt-Büschel durch 4 Punkte

Diese Gleichung beschreibt in eindeutiger Weise durch den Parameter jeweils einen Kegelschnitt.

Beispiel Kreisbüschel:

Für die zwei Kreisgleichungen

beschreibt mit ein Büschel von Kreisen (s. Bild). (Für heben sich die quadratischen Terme auf und es ergibt sich die Gerade .)

Beispiel Kegelschnittbüschel durch 2 Punkte mit vorgegebenen Tangenten:

Das folgende Beispiel baut aus 3 Geraden ein Büschel von Kegelschnitten auf. Es sei:

Dann beschreibt die Gleichung

mit dem Scharparameter ein Büschel von Kegelschnitten durch die beiden Punkte und . Jeder Kegelschnitt berührt die beiden Geraden in diesen Punkten. Das Kegelschnittbüschel ist also durch die beiden Punkte und die beiden Tangenten in diesen Punkten bestimmt. (Ein Kegelschnitt ist immer durch 5 Vorgaben eindeutig bestimmt!) Beide Kegelschnitte, mit der die Linearkombination gebildet wird, sind ausgeartete Kegelschnitte ( ist ein Geradenpaar und ist eine Doppelgerade).

Beispiel Kegelschnittbüschel durch 4 Punkte:

In diesem Fall ist das Büschel eine Linearkombination zweier paralleler Geradenpaare, die sich in den 4 Punkten schneiden (s. Bild):

Durch jeden Punkt der Ebene, der von den Grundpunkten des Büschels verschieden ist, geht genau ein (eventuell ausgearteter) Kegelschnitt des Büschels. Z. B. erhält man zum Nullpunkt für das Geradenpaar .

Kegelschnittbüschel werden in der Literatur ausführlich untersucht.[3]

Äquivalenz nicht ausgearteter Kegelschnitte

  • Alle Ellipsen sind affine Bilder des Einheitskreises (s. Ellipse).
  • Alle Parabeln sind affine Bilder der Normalparabel (s. Parabel).
  • Alle Hyperbeln sind affine Bilder der Einheitshyperbel (s. Hyperbel).

Eine Ellipse ist aber mit einer affinen Abbildung nicht (z. B.) auf eine Parabel abbildbar. Ergänzt man aber die affine Koordinatenebene zu einer projektiven Ebene und fügt einer Parabel den Fernpunkt ihrer Achse hinzu, so lässt sich eine Ellipse mit einer projektiven Abbildung auf eine so erweiterte Parabel abbilden. Das Analoge gilt für eine um die zwei Fernpunkte ihrer Asymptoten ergänzte Hyperbel.

  • Vom projektiven Standpunkt aus sind also alle nicht ausgearteten projektiven Kegelschnitte zueinander äquivalent[4] (s. auch Weblink CDKG, S. 251).

Beispiele:

  1. Die projektive Abbildung mit bildet den Einheitskreis auf die Parabel ab.
  2. Die projektive Abbildung mit bildet die Parabel auf die Hyperbel ab.

Anwendungen und Beispiele

Die Plastik, Mae West auf dem Effnerplatz ist ein Rotationshyperboloid in Form einer Hyperbel
Kegelschnitte beschreiben die Bahnen von Himmelskörpern
Kegelschnitt in der Architektur: Kathedrale von Brasilia

Eine Anwendung finden die Kegelschnitte in der Astronomie, da die Bahnen der Himmelskörper genäherte Kegelschnitte sind.

Auch in der Optik werden sie verwendet – als Rotationsellipsoid für Autoscheinwerfer, als Paraboloid oder Hyperboloid für Spiegelteleskope usw.

In der Darstellenden Geometrie treten Kegelschnitte als Bilder von Kreisen bei Parallel- und Zentralprojektionen auf. Siehe Ellipse (Darstellende Geometrie).

Geschichte

Der griechische Mathematiker Menaichmos untersuchte an Platons Akademie die Kegelschnitte mit Hilfe eines Kegelmodells. Er fand dabei heraus, dass sich das delische Problem auf die Bestimmung des Schnittpunkts zweier Kegelschnitte zurückführen lässt. Danach behandelte Aristaios von Samos (Aristaios der Ältere) in einem nicht mehr erhaltenen Buch das Problem der Konstruktion von Kegelschnitten in Bezug auf drei oder vier Geraden, was später in der Begründung der analytischen Geometrie von René Descartes wieder aufgenommen wurde. Euklid schrieb vier Bücher über Kegelschnitte, die uns aber nicht erhalten sind. Die gesamten Kenntnisse der antiken Mathematiker über die Kegelschnitte fasste Apollonios von Perge in seinem achtbändigen Werk Konika zusammen, wobei Apollonios wie Euklid den synthetischen Zugang zur Geometrie bevorzugte. Die Werke von Euklid, Apollonios und Aristaios wurden ab der Renaissance in Westeuropa wieder aufgegriffen und weiterentwickelt. Die Beschreibung von Kegelschnitten durch Koordinatengleichungen wurde von Fermat und Descartes eingeführt.

Kegelschnitte über beliebigen Zahl-Körpern

Kegelschnitte lassen sich auch über beliebigen Körpern definieren. Es bleiben dabei erstaunlich viele Inzidenz- und Symmetrieeigenschaften erhalten. Siehe Weblink Projektive Geometrie, projektiver Kegelschnitt und für Kegelschnitte über endlichen Körpern den Artikel Quadratische Menge.

Kegelschnitte und Benz-Ebenen

Kegelschnitte spielen bei den Benz-Ebenen, das sind Möbius-Ebenen (Geometrie der Kreise), Laguerre-Ebenen (Geometrie der Parabeln) und Minkowski-Ebenen (Geometrie der Hyperbeln), eine wichtige Rolle.

Siehe auch

Wiktionary: Kegelschnitt – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Literatur

Belege

  1. Kleine Enzyklopädie Mathematik. VEB Verlag Enzyklopädie, Leipzig, 1977, S. 325 f.
  2. Meyberg & Vachenauer: Höhere Mathematik 1. Springer-Verlag, Berlin, ISBN 3-540-59188-5, S. 309.
  3. Z. B. Barry Spain: Analytical Conics. Dover Publications, 2007, ISBN 0-486-45773-7, S. 91.
  4. Projektive Geometrie. Kurzskript, Uni Darmstadt (PDF; 180 kB), S. 12.

Read other articles:

Serbian taekwondo practitioner Milica MandićMandić in 2016 during press conferencePersonal informationNationalitySerbianBorn (1991-12-06) 6 December 1991 (age 31)Belgrade, SR Serbia, SFR YugoslaviaHeight6 ft 1 in (1.85 m)Weight175 lb (79 kg)SportCountrySerbiaSportTaekwondoEvent(s)MiddleweightClubTK GalebCoached byDragan Jović Medal record Women's taekwondo Representing  Serbia Olympic Games 2012 London +67 kg 2020 Tokyo +67 kg World Championships 2017 Muj...

 

Koatn vo da Ukraine Des is a Listn vo de Städt in da Ukraine. (Z = Zensus, S = Schätzung) Rang Nameukrainisch (transkribiert) Nameukrainisch (kyrillisch) Z 1989 Z 2001 S 2008 Vawoitung 1. Kyjiw (Kiew) Київ 2.587.945 2.611.327 2.740.233 Stadt Kiew 2. Charkiw Харків 1.609.959 1.470.902 1.457.786 Oblast Charkiw 3. Dnipro Дніпро 1.177.897 1.065.008 1.014.340 Oblast Dnipropetrowsk 4. Odessa Одеса 1.115.371 1.029.049 1.005.676 Oblast Odessa 5. Donezk Донецьк 1.109.102 ...

 

NhacNy2412 đang sửa phần lớn trang bài viết này trong một thời gian ngắn. Để tránh mâu thuẫn sửa đổi, vui lòng không chỉnh sửa trang khi còn xuất hiện thông báo này. Người đã thêm thông báo này sẽ được hiển thị trong lịch sử trang này. Nếu như trang này chưa được sửa đổi gì trong vài giờ, vui lòng gỡ bỏ bản mẫu. Nếu bạn là người thêm bản mẫu này, hãy nhớ xoá hoặc thay bản mẫu ...

Alfred T. Goshorn circa 1876 Trophy Vase presented to Alfred T. Goshorn, 1876 International Centennial Exposition Wikimedia Commons has media related to Alfred T. Goshorn. Alfred Traber Goshorn (July 15, 1833 – 1902) was a Cincinnati, Ohio businessman and booster who served as Director-General of the 1876 Centennial Exposition in Philadelphia. That was the first world's fair in the United States and so resounding a success that Queen Victoria knighted Goshorn and the leaders of Europe p...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2020) Stahlgewitter Informação geral Origem Lubeque País Alemanha Gênero(s) Rock Against Communism Período em atividade Desde 1995 Integrantes Andreas Koroschetz, Daniel Giese, Frank Krämer Stahlgewitter (em português: T...

 

Municipio de St. Andrews Municipio Municipio de St. AndrewsUbicación en el condado de Walsh en Dakota del Norte Ubicación de Dakota del Norte en EE. UU.Coordenadas 48°29′32″N 97°12′07″O / 48.4922, -97.2019Entidad Municipio • País Estados Unidos • Estado  Dakota del Norte • Condado WalshSuperficie   • Total 95.35 km² • Tierra 94.13 km² • Agua (1.28 %) 1.22 km²Altitud   • Media 245 m s. n. ...

Erdberg U-Bahn-Station in Wien Station Erdberg Basisdaten Bezirk: Landstraße Koordinaten: 48° 11′ 29″ N, 16° 24′ 52″ O48.1912516.414444444444Koordinaten: 48° 11′ 29″ N, 16° 24′ 52″ O Eröffnet: 1991 Gleise (Bahnsteig): 2 (Mittelbahnsteig) Nutzung U-Bahn-Linie: Umsteigemöglichkeiten: Fernbusse Die Station Erdberg der Wiener U-Bahn-Linie U3 ist eine oberirdische Station im 3. Wiener Gemeindebezirk Landstraße. Sie...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مايو 2020) قيثارمعلومات عامةتصنيف آلة وترية (منقورة)هورنبوستيل-ساكس 322.222 آلة موسيقية ذات صلة كونغ هو سمسميةتعديل - تعديل مصدري - تعديل ويكي بيانات يظهر في لوحة سيدة مع قي�...

 

Shape made from cubes joined togetherTetracube redirects here. For the four-dimensional object, see tesseract. All 8 one-sided tetracubes – if chirality is ignored, the bottom 2 in grey are considered the same, giving 7 free tetracubes in total A puzzle involving arranging nine L tricubes into a 3×3×3 cube A polycube is a solid figure formed by joining one or more equal cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam c...

Prophet and son of Jacob in Islam Jusuf redirects here. For the Bosnian professional basketball player, see Jusuf Nurkić. This article contains too many or overly lengthy quotations. Please help summarize the quotations. Consider transferring direct quotations to Wikiquote or excerpts to Wikisource. (March 2023) ProphetYūsuf يُوسُفJosephTitleProphetPredecessorYaqubSuccessorAyyubParentsYa'qub (father)Rahil (mother) Part of a series on IslamIslamic prophets Prophets in the QuranListed b...

 

Weightlifting at the Olympics Men's middleweight weightliftingat the Games of the VIII OlympiadVenueOlympisch StadionDate23 JulyCompetitors25 from 13 nationsMedalists Carlo Galimberti  Italy Alfred Neuland  Estonia Jaan Kikkas  Estonia← 19201928 → Weightlifting at the1924 Summer Olympics−60 kgmen−67.5 kgmen−75 kgmen−82.5 kgmen+82.5 kgmenvte The men's middleweight event was part of the weightlifting programme at the 1924 Summer Olympics. T...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Max Planck Institute for the History of Science – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) Max Planck Institute for the History of ScienceMax-Planck-Institut für WissenschaftsgeschichteAbbrevi...

Form of transport routing This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The examples and perspective in this article may not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (December 2010) (Learn how and when to remove this template message) This article includes a list of general refer...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (فبراير 2023) الرابطة الجزائرية المحترفة الأولى لكرة القدم 2019-20 تفاصيل الموسم 2019؛ 20 البلد ا�...

 

حزاز خنازيري معلومات عامة الاختصاص أمراض معدية  من أنواع طفحة سلية  تعديل مصدري - تعديل   الحزاز الخنازيري (بالإنجليزية: Lichen scrofulosorum)‏ أو السل الجلدي الحزازي (بالإنجليزية: Tuberculosis cutis lichenoides)‏ هو طفحة سلية نادرة تظهر على شكل طفح حزازي على شكل حطاطات دقيقة في الأطفال وا�...

Arena at Colgate University in Hamilton, New York This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (October 2019) (Learn how and when to remove this template message) Wesley M. Cotterell CourtAdonal's House[citation needed]Location13 Oak DriveHamilton, NY 13346Coordinates42°48′54″N 75°32′34″W / &#x...

 

Edward IVRaja Inggris (pertama kali) Berkuasa4 Maret 1461 – 3 Oktober 1470[1]Penobatan28 Juni 1461PendahuluHenry VIPenerusHenry VIRaja Inggris (kedua kali) Berkuasa11 April 1471 – 9 April 1483PendahuluHenry VIPenerusEdward VInformasi pribadiPemakamanKapel St George, Kastel WindsorWangsaWangsa YorkAyahRichard Plantagenet, Adipati Ketiga YorkIbuCecily NevillePasanganElizabeth WoodvilleAnakdiantaranyaElizabeth, Ratu InggrisMary dari YorkCecily dari York, Viscountess WellesE...

 

Ярослав ОлеськевичОлеськевич Ярослав ОлександровичЗагальна інформаціяНаціональність УкраїнецьГромадянство  УкраїнаМісце проживання ЛьвівНародження 28 березня 2005(2005-03-28) (18 років)Львів, УкраїнаЗріст 185 смВага 65 кгСпортКраїна  УкраїнаКлуб Львівська політехніка, Л...

Опис файлу Опис Фесик Микола Кирилович. міський голова Броварів Джерело з книги Бровари - мій дім Час створення 1970-ті Автор зображення невідомо Ліцензія Ця робота є невільною — тобто, не відповідає визначенню вільних творів культури. Згідно з рішенням фонду «Вікімеді�...

 

Bilateral relationsArmenian–Turkish relations Armenia Turkey Diplomatic relations between Armenia and Turkey are officially non-existent and have historically been hostile.[1] Whilst Turkey recognised Armenia (in the borders of the Armenian Soviet Socialist Republic) shortly after the latter proclaimed independence in September 1991, the two countries have failed to establish diplomatic relations. In 1993, Turkey reacted to the war in Nagorno-Karabakh by closing its border with Arme...

 
Kembali kehalaman sebelumnya